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The ESP Vision

ESP is an open-source research platform for heterogeneous system-on-chip design that combines a scalable
tile-based architecture and a flexible system-level design methodology.
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ESP provides three accelerator flows: RTL, high-level synthesis (HLS), machine learning frameworks. All three
design flows converge to the ESP automated SoC integration flow that generates the necessary hardware and
software interfaces to rapidly enable full-system prototyping on FPGA.
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Professor Carloni will give a
talk titled “Scalable Open-
Source System-on-Chip
Design”at the VLSISoC
conference on October 7th,

2020.
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We will present a tutorial on d’_}) COLUMBIA UNIVERSITY

ESP at MICRO 2020, IN THE CITY OF NEW YORK
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Heterogeneous Architectures Are Emerging Everywhere

Processing System
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How it Works
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From Microprocessors to Systems-on-Chip (SoC)
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[ Source: M. Bohr 2009 ]

2008

Nehalem
Processor

Transistor Count:
Frequency:

# Cores:

Cache Size:

1/0 Peak Bandwidth:
Adaptive Circuits:
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Intel386™
280 thousand
16 MHz
1
None
64 MB/sec
None

Nehalem
731 million
>3.6 GHz
4
8 MB
50 GB/sec
Sleep Mode

Turbo Mode
Power Gating

Adaptive Frequency Clocking
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Nehalem Design Scalable Via Modularity

Nehalem Building
Block Library

QPI

Intel, Haifa, Israel

Ex: 4 Core

Ex: 8 Core
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Source Intel.com [P. Gelsinger

Press Briefing, Mar'o8]

41 14nm 6th-Generation Core Processor SoC with
Low Power Consumption and Improved
Performance

Eyal Fayneh, Marcelo Yuffe, Ernest Knoll, Michael Zelikson,
Muhammad Abozaed, Yair Talker, Ziv Shmuely, Saher Abu Rahme
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Intel's 6" generation Core processor (code named “Skylake” or SKL) was designed



The Growth of Specialized IP Blocks: The Apple A8 SoC

SophiaShao
@Harvard

SRAM Cache
Memory

Quad-Core GPU
Dual-Core CPU

[ Source: Shao et al. 2015]
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Number of specialized IP blocks across five generations of Apple SoCs
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The analysis of die photos from Apple’s A6, A7, and A8
SoCs shows that more than half of the die area is
dedicated to blocks that are neither CPUs nor GPUs, but
rather specialized Intellectual Property (IP) blocks

Many IP blocks are accelerators, i.e. specialized hardware
components that execute an important computation
more efficiently than software
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The Age of Heterogeneous Computing

* The migration from homogeneous multi-core architectures to
heterogeneous System-on-Chip architectures will accelerate,
across almost all computing domains

* from loT devices, embedded systems and mobile devices to data centers and
supercomputers

* A heterogeneous SoC will combine an increasingly diverse set of
components

« different CPUs, GPUs, hardware accelerators, memory hierarchies, I/O
peripherals, sensors, reconfigurable engines, analog blocks...

* The set of heterogeneous SoCs in production in any given year
will be itself heterogeneous!

* no single SoC architecture will domi'rl_ate all the markets
©Luca Carloni NBE & COLUMBIA UNIVERSITY
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Where the Key Challenges in SoC Design Are...

 The biggest challenges are (and will increasingly be)

found in the complexity of system integration

— How to design, program and validate scalable systems that combine a
very large number of heterogeneous components to provide a solution
that is specialized for a target class of applications?

e How to handle this complexity?
— raise the level of abstraction to System-Level Design
— adopt compositional design methods with the Protocol & Shell Paradigm
— promote Design Reuse

: &2 COLUMBIA UNIVERSITY
Luca Carlonl ‘ IN THE CITY OF NEW YORK



What is Needed? To Think at the System Level.

e Move from a processor-centric to an SoC-centric perspective
— The processor core is just one component among many others

e Develop platforms, not just architectures

— A platform combines an architecture and a companion design
methodology

e Raise the level of abstraction
— Move from RTL Design to System-Level Design

e Promote Open-Source Hardware
— Build libraries of reusable components

. P &2 COLUMBIA UNIVERSITY
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The ESP Scalable Architecture Template

Possible Instance of an ESP Chip

— each hosting at least one configurable
processor core capable of running an OS

— synthesized from high-level specs
e  OtherTiles
— memory interfaces, 1/O, etc.
e Network-on-Chip (NoC)
— playing key roles at both design and run time

Template Properties

Regularity
— tile-based design
— pre-designed on-chip
infrastructure for communication
and resource management

Flexibility
— each ESP design is the result of a
configurable mix of

programmable tiles and
accelerator tiles

Specialization

— with automatic high-level
synthesis of accelerators for key
computational kernels

&2 COLUMBIA UNIVERSITY
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Example of a System We Built:

FPGA Prototype to Accelerate Wide-Ar

2. 3. WAMI_APP_DEBAYER Disconnec! Start Stop

4. WAMI_APP_GRAYSCALE 5. WAMI_APP_GRADIENT 6. WAMI_APP_WARP 7.WAMI_APP_SUBTRACT Toggle Statistics

8 WAMI_APP_STEEPEST DESCENT| 9.W" _APP_HESSIAN 10. WAMI_APP_SD_UPDATE 11. WAMI_APP_MULT

|
13. WAMI_APP_ADD | 14 WAMLAPF,CHANGE,DHEWON- i

Power consumption relative to VF max

12. WAMI_APP_RESHAPE

DMA NoCs traffic

f & & 5 B g8 8 e o8y

o
|- 4 Motion Detection from
WAMI-Application

©Luca Carloni

ea Motion Imagery

Design: Complete design of
WAMI-App running on an FPGA
implementation of an ESP
architecture

featuring 1 embedded processor,
12 accelerators, 1 five-plane NoC,
and 2 DRAM controllers

SW application running on top of
Linux while leveraging multi-
threading library to program the
accelerators and control their
concurrent, pipelined execution

Five-plane, 2D-mesh NoC
efficiently supports multiple
independent frequency domains
and a variety of platform services

[P. Mantovani, L. P. Carloni et al., An FPGA-Based
Infrastructure for Fine-Grained DVFS Analysis in
High-Performance Embedded Systems, DAC 2016 ]



ESP Architecture

* RISC-V Processors
* Many-Accelerator

* Distributed Memory
* Multi-Plane NoC

-

The ESP architecture implements a

modular and heterogeneous,
giving processors and accelerators
similar weight in the SoC

-

distributed system, which is scalable,

/
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ESP Architecture: Processor Tile

NoC
. . . ./romerS

* Processor off-the-shelf
o RISC-V Ariane (64 bit)
SPARCVS8 Leon3 (32 bit)
o L1 private cache

coherence I0/IRQ
planes plane

* L2 private cache
o Configurable size
o MESI protocol

* |O/IRQ channel
o Un-cached
o Accelerator config. registers,
interrupts, flush, UART, ...

PLN
A4
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ESP Architecture: Memory Tile

NoC
* External Memory Channel ..../
* LLC and directory partition ....
o Configurable size
o Extended MESI protocol ..
o Supports coherent-DMA ...
for accelerators
* DMA channels
* I0/IRQ channel

coherence I0/IRQ
planes plane

NoC

LLC &
directory

coherence DMA  10/IRQ
planes planes  plane

PLN
A4

&2 COLUMBIA UNIVERSITY
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ESP Architecture: AcceleratorTile

* Accelerator Socket
w/ Platform Services

o Direct-memory-access

o Run-time selection of
coherence model:

= Fully coherent
» LLC coherent

= Non coherent
o User-defined registers

o Distributed interrupt

©Luca Carloni

NoC
. . . ./rOUfers

coherence I0/IRQ
planes plane

NoC

LLC &
dlrectory

coherenge IO/IRQ coher nce IO/IRQ
planes qne plane p|G pI es plane
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The Twofold Role of the Network-on-Chip

e Ascalable NoCis instrumental to accommodate heterogeneous concurrency

and computing locality in ESP | Final User

e AtDesignTime i Thvoad|Throad Thigad Thread

— simplifies integration of i Final User Final User
heterogeneous tiles to ' | irresdhreadlhread Thread bTOS wesalrvesaltesalrivesd| |
balance regularity and ! AP :
specialization . VCMF

e AtRunTime

— energy efficient inter-tile
data communication with
integrated support for fine-
grain power management
and other services

RTOS

VCMF |

CORE 0

'
; I/O Interface . _ / — DATA |
' R L . —— POWER-CONTROL |

meees £ 35,2 2, P ittt J

e  The NoC Interface interacts directly with the Tile Socket that supports the ESP Platform Services
— communication/synchronization channels among tiles
— fine-grain power management with dynamic voltage-frequency scaling
— seamless dynamic support for various accelerator coherence models

&2 COLUMBIA UNIVERSITY
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Heterogeneous Applications Bring Heterogeneous Requirements

Data Structures of the PERFECT TAV Benchmarks

O minimum addressable element
O input data (in-place sutput data)
O output data

Sort FFT-20
32<nit float number H )
1 B4-bit
[ complex
1024 i number 2 2"
+ Li
— f— workspace

—l— N —

Debayer Lucas Kanade
H ) Moo
16.bit pixel A8=bit pixel H -
32-bit pixel § 32-bit pixel
ar H +
F (531 1 &
%Ix. Hessian *
5>
e N ——p
Change Detection
ol =
' | g W |
H 16-bit pixel 32=it pixel 8-bit pixel
M N N
ser
frame 5 Ed x3 i =R
< N > —N— £ —N—
Interpolation-1 y Interpolation-2 13
| ——N— Gd=bit float number
o | gty ]
cow’lplex | 32-bit float number
rrrrr N B4-bit
6d-bit flo
13 complex N —N—
i " = numbe 1 [1_coortnaes
- N > G4-bit float number
3? bit float number redar dota
e e
Backprojection H
proj Ba-bit T
e 5 ] e 3 complex
W ) |
B4-bit complex number coordinates l
G4-bit fleat number

——N—
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Structure and Behavior of the Debayer Accelerator

aAccelerator Tile

Private Local Memaory

circular buffer

N
out
ping-pong buffer
3}
Juouuuuo g
e ONODEG 25— 85
. out[1] = oaut[2] = outf1]=
Computation deberger debayer debayer -
i [in[2 &7} fin3.7])
output [ 1 = ==
ib)

e  While the Debayer structure and behavior is
representative of the other benchmarks, the
specifics of the actual computations, I/O patterns,
and scratchpad memories vary greatly among them

&2 COLUMBIA UNIVERSITY
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How to Couple Accelerators, Processors and Memories?
Tightly-Coupled Accelerators (TCA)

* Private local memories (aka
scratchpads) are key to
performance and energy
efficiency of accelerators

* There are two main models of

coupling accelerators with
processors, memories
* Tightly-Coupled Accelerators
* Loosely-Coupled Accelerators

[ E. G. Cota, P. Mantovani, G. Di Guglielmo, and L. P.
Carloni, An Analysis of Accelerator Coupling in
Heterogeneous Architectures, DAC'15]

©Luca Carloni
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The Key Role of the Private Local Memories (PLM)

\
DMA\\ Private Local Memory e Tailored, many-ported PLMs are key
Input
i read | el 5o 0 to accelerator performance

%_\{ e A scratchpad features aggressive
Bankl | | Bank2 SRAM banking that provides multi-

I \K port memory accesses to match the
=3 multiple parallel blocks of the

- Bank3 Bank4 .
SRR - computation datapath
y N :
| \ —® Banks — Level-1 caches cannot match this
’ <[ leli
aralielism
A P
Output DMA - Bank6
write/| /| [C. Pilato, P. Mantovani, G. Di Guglielmo, and L. P. Carloni, System-
’ Level Optimization of Accelerator Local Memory for Heterogeneous
+ + Systems-on-Chip. IEEE Trans. on CAD of Integrated Circuits and

Systems, 2017. ]
Pa
(S|P]
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ESP Accelerator Socket

ESP Accelerator Socket

ESP accelerator

I |

HLS [C/C++, SystemC, Tensorflow*, Pytorch*] I
RTL [Chisel, Verilog, ...]

read/write config

PLM

done

private
cache

DMA cfg

TLB ctrl regs

vo]

P éé =1

e

coherence
planes

45 54

coherent-DMA DMA
planes planes

IO/IRQ

plane

NoC

Third-Party Accelerator Socket*
third-party accelerator
(NVDLAX, ...)
read/write config done
AXl4 bus APB bus
< l > < > | IRQ
El_lé =
2 |0ﬁ%o
pIIDaI\;I\és plane NoC

&2 COLUMBIA UNIVERSITY
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ESP Platform Services

Accelerator tile Processor Tile
Reconfi .urable co.herence 1/0 and un-cached memor
Point-to-point R :
ESP or AX| interface Distributed interrupts
DVFS controller DVFS controller
Miscellaneous Tile Memory Tile
Debug interface Independent DDR Channel

LLC Slice
Coherent DMA
——————— DMA Handler

A |
A4

&2 COLUMBIA UNIVERSITY
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ESP Software Socket

 ESP accelerator API

{

int *buffer = esp _alloc(size);

o Seamless shared memory

I
1 /*
. . . ':' * Example of existing C application with ESP
o Generation OfdeVICe drlver ! * accelerators that replace software kernels 2, 3,
. . . ! * and 5. The cfg_k# contains buffer and the
and unit-test appllcatlon ! * accelerator configuration.
l' */
1
]
]
1
I

O e A |' . for (...) {
cT; O < pp ication kernel 1 (buffer,...); /* existing software */
n O \
= 3 \ esp_run(cfg k2); /* run accelerator(s) */
e L ESP Library \ oS run (ofg k3) |
; \
a kernel 4 (buffer,...); /* existing software */
ESP accelerator driver | \ - g
F.) O \“ : esp_run (cfg k5);
c O \
CT) o < ESP core ESP aIIOC \ validate (buffer) ; /* existing checks %/
v £ \
) \ esp_free(); /* memory free */
L Linux )
-
P

©Luca Carloni A &2 COLUMBIA UNIVERSITY
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Cache Coherence and Loosely-Coupled Accelerators

e An analysis of the literature indicates that there are three main cache-
coherence models for loosely-coupled accelerators:

1. Non-Coherent Accelerator
— the accelerator operates through DMA bypassing the processor caches

2. Fully-Coherent Accelerator

— the accelerator issues main-memory requests that are coherent with the entire cache
hierarchy

 this approach can endow accelerators with a private cache, thus requiring no updates to the
coherence protocol

3. Last Level Cache (LLC)-Coherent Accelerator

— the accelerator issues main-memory requests that are coherent with the LLC, but not
with the private caches of the processors

* inthis case, DMA transactions address the shared LLC, rather than off-chip main memory
[

. P &2 COLUMBIA UNIVERSITY
©Luca Carlonl ‘ IN THE CITY OF NEW YORK



Example: NoC Services to Support Heterogeneous
Cache-Coherence Models for Accelerators

e Seamless dynamic support
for 3 coherence models:

— Fully coherent accelerators

— Non-coherent accelerators

— Last-Level-Cache (LCC)
coherent accelerators

accelerators

[D. Giri, P. Mantovani, and L. P. Carloni, Accelerators &
Coherence: An SoC Perspective. IEEE MICRO, 2018. ]

©Luca Carloni [\

processor processor mem. ctrl (_,é

FLUSH FLUSH

Y S
private  private LLC &
cache cache directory
! 11 NI
Network-on-Chip W @Iea,_f’so)
i Y i A 4 i A 4 A 4 ¢
private DMA DMA
cache ctrl ctrl
datapath  datapath  datapath  datapath
PLM PLM PLM PLM
fully LLC non fully
coherent  coherent coherent  coherent
(cache) (no cache)
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Extending ESP to Support Heterogeneous
Cache-Coherence Models for Accelerators

SoC
1 NoC routers DRﬁM
mem. ctrl
(DDR)
- -
= LLC &
mem directﬂw-gg "i
12 3 4 5 6 |
L SEE Hp _._NoC|coherence MA 10/IRO
: ~—...L_planes planes plane]
"' TEe—
[ bank |[ bank LLresss Il
accelerator PLM %bank i bank% L1 instr] L1 datal
read/write port ::Drrﬁi port dure WJWT_}:I
cache TLE %’ﬂr‘r‘ | ‘rggs [ IRQ L2 cache]_,
& e T AT )
12 3 4 5 6 12 3 6
coherence MA, I0/IRG |NoClcoherence |1QJIRD
L planes planes plane planes plane |

©Luca Carloni
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e First NoC-based system enabling
the three models of coherence for
accelerators to coexist and operate
simultaneously through run-time
selection in the same SoC

— design based on ESP Platform Services

Extension of the MESI directory-
based protocol to integrate LLC-
coherent accelerators into an SoC

— the design leverages the tile-based
architecture of ESP to guarantee
scalability and modularity

&2 COLUMBIA UNIVERSITY
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Heterogeneous Coherence Implementation

Check and Update SoC Configuration

Accelerator - Accelerator - Accelerator - Accelerator -
sort w [ | Cache spmv ¥ | || Cache fftzd « | [ | Cache fftld « | [_| Cache
Accelerator A Memory & Debugv Processor A Accelerator b
fitld « | [ | Cache ~ | | Cache « |+ Cache sort « | | Cache
Accelerator - Processor - Memory - Accelerator -
fftzd « | [ | Cache « |+ Cache + || Cache spmv ¥ [¥iCache!
Accelerator - Accelerator - Accelerator - Accelerator -
spmv v [ | Cache sort w | | Cache fftld v [+ Cache fftzd + | | Cache

[D. Giri, P. Mantovani, L. P. Carloni, Accelerators &
Coherence: An SoC Perspective, IEEE Micro, Nov/Dec 2018]

©Luca Carloni
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e The CAD Infrastructure of ESP
allows

— direct instantiation of heterogeneous
configurable components from
predesigned libraries

— fully automated flow from the GUI to
the bitstream for FPGAs
e Extension of ESP to support
atomic test-and-set and
compare-and-swap operations
over the NoC allows
running multi-processor and

multi-accelerator applications
on top of Linux SMP

&2 COLUMBIA UNIVERSITY
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ESP Vision: Domain Experts Can Design SoCs

(Va]
—
: @
I ” O PyTorch
()] — raN
) D accelerator
[
S Ee lerat
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Our System-Level Design Approach to Heterogeneous
Computing: Key Ingredients

Develop Platforms, not just Architectures
* A platform combines an architecture and a companion design methodology

Raise the level of abstraction
* Move from RTL Design to System-Level Design
* Move from Verilog/VHDL to high-level programming languages like SystemC
* Move from ISA and RTL simulators to Virtual Platforms

* Move from Logic Synthesis to High-Level Synthesis (both commercial and in-house tools), which is
the key to enabling rich design-space exploration

Adopt compositional design methods

* Rely on customizable libraries of HW/SW interfaces to simplify the integration of heterogeneous
components

Use formal metrics for design reuse
* Synthesize Pareto frontiers of optimal implementations from high-level specs

Build real prototypes (both chips and FPGA-based full-system designs)
* Prototypes drive research in systems, architectures, software and CAD tools

P &2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK
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ESP Methodology In Practice e
L____manual |

Accelerator Flow Y. W SoC Flow
Generate accelerator } Generate sockets

q
%;»i
8

Configure RISC-V SoC
Compile bare-metal

Specialize accelerator

* this step is automated
* for ML applications

©Luca Carloni

Implement for FGPA

Compile Linux
Deploy prototype s
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ESP Design Example: An Accelerator for WAMI

Dehgyer

 The PERFECT WAMI-app is an image processing pipeline in behavioral C

Grayscale

code |

* From a sequence of frames it extracts masks of “meaningfully” changed
pixels .,

feedback

Reshape

* Complex data-dependency among kernels

* Computational intensive matrix operations
* Global-memory access to compute ratio 45%

* Floating-point operation to compute ratio 15%

* We designed 12 accelerators starting from a C “programmer-view” reference
implementation

* Methodology to port C into synthesizable SystemC
* Automatic generation of customized RTL memory subsystems for each accelerator

[P. Mantovani, G. Di Guglielmo, and L. P. Carloni, High-Level Synthesis —
of Accelerators in Embedded Scalable Platforms, ASPDAC 2016] -

[

©Luca Carloni

Matrix-Add

Change-Detection

Warp (ax)
| =

feedback

Gradient

Warp ()

Hessian

Lucas-Kanade

feedback

Lines of Code

Kernels Cc SystemC RTL
Debayer 195 664 8440
Grayscale 21 368 4079
Warp 88 571 6601
Gradient 65 540 12163
Subtract 36 379 4684
Steep.-Descent 34 410 8744
SD-Update 55 383 7864
Hessian 43 358 7042
Matrix-Invert 166 388 7392
Matrix-Mult 55 307 2708
Reshape 42 269 2160
Matrix-Add 36 287 2310
Change-Detect. 128 939 18416

Total 964 5863 92603
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#ineglude <systemc.h>

SC_MODULE (Debayer) |
so_in<beol> clk, rst;

private:
co zionalch

nt Dule0a8];
int B1[2048];

PuD

A

SC_CTOR (debayer) |
SC_CTHREAD{input, clk.posi)):
reset_signal_is{rst, false);
SC_CTHREAD {compule, clk.pasi});
reset_signal dsirst, falsae);
SC_CTHREAD {cutput, clk.pos(l};
reset_signal_is{rst, false);
.

1

vold lnput (weldd) |
S reset ...
unsigned circ = 0; /Y circular buffer write peinter
wait {);
while (true)} |
Li: for (imt r=0; r<2048; r+i)
S DMA reguest
S read input ...
Ll: fer [int c=0; c<2048&; c++)
{1 ADfediege]e] = £4...00; + Afweite Lo AQ
SF output ...
if (r ==5){

A wait for ready from compute then netify as valid

}

CArcE4;
if (zirg == &)
cire = {;

¥
H
1

©Luca Carloni

Example of Accelerator Design with HLS: Debayer - 1

weid compute (veid) |

i D=2 ag = truoe;

int r_r = 0; // central row of the mask
S reset ...

walt (};

while (true] |
LZ: for (int r=0; r<2048-PRD; r++) |
A7 (wait for valid from input then netify as ready)
r_r = alre_bulfer_rowi{r + 2];
L3: fer (int j=PAD; <2048 -PRD; J++) ¢
if (flag) BOI[3] = giAOlr_cl[i-21, AQ[r_r][3j-11,

BO[r_rl[31, AO[r_rl[j+1], BO[r_rl(i+2]., ...);
else PB1[4] = g{AD[c_c] [§-2], AD[r_r]li-1].
AO[r_c] 3]s AD[c_x][d+Ll]), AD(c_re] [2+2], ...0;

1
Ff fwalld teo output, ready to compute)
flag = !flag;
1
}

wvolid cutput (veid) |
i Al = A7 ag = troe;
£f reset
wallb (1;
while (true] |
L4: fer (int r-PAD; r<2048-PAD; r++} |

Af (wait feor valid from compute then notify af ready)

Af prepare DMA regquest

A4 mend data

L5: fer (int c-PAD; c<2048-PRD; o44) |

if (flag) hiBC[ec]l, ...); #fread from array BO
else h(Bl[z], ...); f/read from array Bl
3

A4 (ready to compule)

flag = !flag;

Accelerator Tile

Private Lol Memory

| 1 [mzw
out
. ping-pong buffer
[ —
T L |
outfi]=
debenper =
il
g o
| |

L

The 3 processes execute in pipeline

— ona2048x2048-pixel image, which
is stored in DRAM, to produce the
corresponding debayered version

The circular buffer allows the reuse
of local data, thus minimizing the
data transfers with DRAM

The ping-pong buffer allows the
overlapping of computation and
communication
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ESP Accelerator Flow

Developers focus on the high-level specification, decoupled from
memory access, system communication, hardware/software interface

-
-
-
_____—
—
-
e

i ~—.iJ hIs4mIl=|']=I|3§ﬂ >

Programmer View
Design Space

2

(9]

&

o OPyTorch

g

s HLS

3 Design

= 3 Flows RTL

(o

g Iil __GQJ Design Space

P=N
Cooe| ( n2d >
SSSSSS G =
Sao 3 Code Transformation =)

g 2 1, - .

T g CcHSEU RTL 3 " High-Level Synthesis =)
o J  Rilgmmy - 2| e .

s O —— Design
=SS _S_/Jﬁ‘fm% = Flows ' 2
..... >
Performance
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Example of Design-Space Exploration with HLS:
Accelerator for the SAR Interp-1 Kernel

Main loop in Interpolation-l kernel Pareto Set Obtained with
Function interpl ( High-Level Synthesis
Co /‘\ (1GHz@1V, CMOS 32nm)
{ accum = O ./-\ /-\.
for (. 100 ©
{
accum += sinc (input); @ Break
}
store (accum) ; 80 @ Unroll
}
} = @ Pipeline
ol
* Presence of expensive combinational g o
o
function (sinc() ) in the inner most loop L IR
e Use of “loop knobs” provided by HLS tools . : %Oo o o
to optimize for power and performance
e Derivation of Pareto set highlighting Power- 0
0 2 4 6

Performance trade-offs

Execution Time (million-clock-cycles)
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Retrospective: Latency-Insensitive Design [Carloni et al. "99]

bypassable gueue

dataln, . clat_a()nt,
muxl- — voidOut,

= L e ) o
N .
C R stopOut, stallable core module

eng| |deq, gl | | empry, [bypass,

C dataOut,
— voidOut,
C dataln, 1 ~— stopln,
voidln, — mux
stopOut.=—— FIU o
o
R I o pty VO% W le?‘lll,, .
Typass, control
stopOut, stopln,, »,
engg ) qur.n bypassz
full sy empiyy s

Shell Relay Relay Shell Latency-lnsenSitive DESign

Station Station

A e s the foundation for the flexible synthesizable RTL

J
—
ﬁg‘

G representation
T RS e anticipates the separation of computation from
e (;mll S communication that is proper of TLM with SystemC
. i — through the introduction of the Protocols & Shell
Fj i | vetaous paradigm
=

. P &2 COLUMBIA UNIVERSITY
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Example: Combining LID and HLS in the Design
of the Debayer Accelerator
e The combination of the ESP interface and

input [%5] compute _..." output the latency-insensitive protocol enable a

broad HLS-supported design-space
|—> AD[6) [2048] j\_l-: BO[2048]

exploration
Bl[2048]

e  For example, for the compute process

— Implementation E is obtained by unrolling loop
L3 for 2 iterations, which requires 2 concurrent
memory-read operations

— Implementation F is obtained by unrolling L3 for
4 iterations to maximize performance at the cost
of more area, but with only 2 memory-read
interfaces; this creates a bottleneck because the
4 memory operations cannot be all scheduled in
the same clock cycle

— Implementation G, which Pareto-dominates
implementation F, is obtained by unrolling L3 for
4 iterations and having 4 memory-read
interfaces to allow the 4 memory-read
operations to execute concurrently

High=Level Synthesis

latency
latency
latency -

[C. Pilato, P. Mantovani, G. Di Guglielmo, and L. P. Carloni, System-Level Optimization of

Accelerator Local Memory for Heterogeneous Systems-on-Chip, TCAD '17] -
: < &2 COLUMBIA UNIVERSITY
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ESPAML

Open-source design flow to build and
program SoCs for ML applications.

, P=
Combines 1H8[2 and hls 4 ml
A=4

* ESP is a platform for heterogeneous SoC
design

* hls4ml automatically generates
accelerators from ML models

Main contributions to ESP:

* Automated integration of hlsdml
accelerators

e Accelerator-accelerator communication
e Accelerator invocation API

SW Application

Vision
kernel \
Vision
kernel
\ Vision /
kernel ML kernel ML kernel
SW
Develop app
with ESP4ML
ESP-generated .
accelerator tile socket \ ‘ hd hd Y
ESP-generated acc 1T
accelerator wrapper 0 ® E
' ® App invoking
. accelerators
° °

[D. Giri, K.-L. Chiu, G. Di Guglielmo, P. Mantovani, and L. P. Carloni. “ESP4ML: Platform-Based

Design of Systems-on-Chip for Embedded Machine Learning’’, DATE "20]

©Luca Carloni
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Seamless Integration of Third-Party Accelerators

NoC Tile Configuration

* New design flow of general — —
applicability &
— demonstrated w/ NVIDIA NVDLA

e Transparent accelerator integration
— original software apps can run “as is”

. Llnear performance Scalablllty [ HasL2 \clkneg;mFHaspLL [T CLKBUF || [ HasL2 |CIkM:mFH=;PLL [T CLK BUF || M HasL2 |C\kﬂm:mFH=3PLL [~ CLK BUF
. R Scaling NVDLA instances and DDR channels
— when scaling up @ 50 MHz
. o~ | Impl.: = 0 =
NVDLA instances T 5
- 53 m LeNet 3.9
with DDR channels 3% 4 3.1
0= -
w £
Q5 2 1
NoC Tlle Configuration E c
0.0 0 1
= £om
0
s | e o 3 HesPLL - CLK B [D. Giri et al. “Ariane + NVDLA: Seamless 1 NVDLA 2 NVDLA 3 NVDLA 4 NVDLA
Lo i = Third-Party IP Integration with ESP”, i1mem 2mem 3 mem 4 mem
. CARRV’20] — ctrl ctrl ctrl ctrl
P=N
M Has L2 ‘ Clk Reg: H [T HasPLL [T CLEBUF [ I HasL2 Clk Reg: H M HasPLL ™ CLK BUF
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ESP Interactive SoC Flow

soC Data Cache cPU
virtexup  Bigphysical area | Cache En.: = o Sddnes
ETH FPnew @ Scatter/Gather L2 SETS: 512 —
No JTAG
Eth {192.168.1.2) L2 WAYS: 4 —
Use SGMII

No SVGA LLC SETS: 1024 —
With synchronizers e
ACCL2 SETS: 512 —

ACC L2 WAYS: 4 —

SoC Integratio

NocC configuration 'NoC Tile Configuration
Rows: 2 Cals: |2
Config

I~ Monitor DDR bandwidth
[ Monitor memory access
[~ Monitor injection rate

I~ Monitor router ports

I Manitar accelerstor status (1,0) (1,1)

[ Monitor L2 Hit/Miss St b 1 b

I Monitor LLC Hit/Miss

Titas12 | CkReg: [0 & FiHasPLE M OREUF | F Hasl2 | ClkReg: [0, & [ iHasPLL [T CLK BUF

[ Manitor DVES empty
Num CPUSs: 1 Finas 2] CkReg: 077 5] FiHasel el T ok 8 I Has L2 | icicnegs [07 5] FiHas AL T Tk BUE
Num memory 1
Num 1/ tiles: 1

Num accelerators: 0

Num CLK regions: 1

PLRISC-V°

Num CLKBUF: 0

VF points: |
" BN

Generate SoC config

& COLUMBIA"UNIVERSITY
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In Summary: ESP for Open-Source Hardware

. htt S: // .esp.cs.columbia.ed
 We contribute ESP to the OSH B o o e o -
community in order to support the ESP

realization Of the open-source SoC platform

* more scalable architectures for SoCs o v oo Latest Posts
that integrate The ESP Vision
° more heterogeneous componentsl E‘SPbSEdpe:(s;trcereszar;plbltf ’ym(fm: tjzg s mftfgzr;‘\:;.;-chlpdes\gnmatcombmesascalable
thanks to a o) } e 8 *
H H o8 i oming talk a
* more flexible design methodology LS ¥ 3% VESISoC 3050
. . ! GIC) g v@‘ B -
which accommodates different }Qg% i b ot
R - - @ 5 o 3 Rapid ourcs" e ‘-:/
specification languages and design flows r—— § o e
CHSEL RTL baremetalapps
o S . d h S %e:;?: :':‘p’:’l't:"s/(i SwW Bulld ?\ / TR
ESP was conceived as a heterogeneous

SW lerary

i nte g rat i o n p I atfo rm fro m t h e Sta rt a n d ESP provides three accelerator flows: RTL, high-level synthesis (HLS), machine learning frameworks. Al three

design flows converge to the ESP automated SoC integration flow that generates the necessary hardware and

tested t h rou g h ye ars of teac h | n g at T it oes 1 (apid Sable MLt Ot TR ARG

Overview

Columbia University

* We invite you to use ESP for your Theoﬂwm bl

We will present a tutorial on

projects and to contribute to ESP! 4= SoC Platform
©Luca Carloni NBE & COLUMBIA UNIVERSITY
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Thank you from the =SP team!

https://esp.cs.columbia.edu

https://github.com/sld-columbia/esp

1Y
i System Level Design Group

CSsz

e@CU COMPUTER SCIENCE

rP=N
4D
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