
ESP: The Open-Source SoC Platform
Luca Carloni

Department of Computer Science
Columbia University in the City of New York

©SLD Group – Columbia University

International Conference on VLSI Design & International Conference on Embedded Design
Bangalore, India, January 5th, 2020

Open Source Release of ESP

©SLD Group – Columbia University

https://www.esp.cs.columbia.edu

Why ESP?

©SLD Group – Columbia University

Heterogeneous systems are pervasive

Integrating accelerators into a SoC is hard

Doing so in a scalable way is very hard

Keeping the system simple to program while doing so is even harder

ESP makes it easy

ESP combines a scalable architecture with a flexible methodology

ESP enables several accelerator design flows
and takes care of the hardware and software integration

B
L
A
D
E

C
E
N
T
E
R

D
A
T
A

CPU GPU

$

Accelerators

I/
O

D
D

R
Embedded SoC

©SLD Group – Columbia University

ESP Vision: Domain Experts Can Design SoCs

Rapid
Prototyping

SoC Integration

A
p

p
lic

at
io

n
 D

ev
el

o
p

er
s

H
ar

d
w

ar
e

D
es

ig
n

er
s

*
*

 B
y

le
w

in
g

@
is

c.
ta

m
u

.e
d

u
L

ar
ry

 E
w

in
g

 a
n

d
 T

h
e

G
IM

P

**

…

…

…accelerator

accelerator

accelerator
HLS

Design
Flows

RTL
Design
Flows

*
 B

y
N

vi
d

ia
 C

o
rp

o
ra

ti
o

n

*

2. Proposed Architecture
• Embedded Scalable Platforms (ESP)

Outline

©SLD Group – Columbia University

3. Methodology and Design Flow
• with a Retrospective on

Latency-Insensitive Design

C1

C2
C3

C4

C5

C6
C7

RS

RS

RS

RS
RS

The Protocol & Shell
Paradigm

1. Motivation
• The Rise of Heterogeneous Computing

Heterogeneous Architectures Are Emerging Everywhere

©SLD Group – Columbia University

[Source:
https://cloudplatform.googleblog.com/]

[Source: www.microsoft.com/]
[Source: https://aws.amazon.com/ec2/instance-types/f1/]

[Source: www.mobileye.com/]

[Source: “Xeon+FPGA Tutorial @ ISCA’16”] [Source: www.xilinx.com/]

[Source: https://blogs.nvidia.com/]

From Microprocessors to Systems-on-Chip (SoC)

©SLD Group – Columbia University

[
So

u
rc

e:
 M

. B
o

h
r

2
0

0
9

]

So
u

rc
e

In
te

l.c
o

m
 [

P.
 G

el
si

n
ge

r
P

re
ss

 B
ri

ef
in

g,
 M

ar
’0

8
]

The System Migrates into The Chip: Evolution of Mobile Phones

©SLD Group – Columbia University

[
So

u
rc

e
:

Y
. N

eu
vo

, “
C

e
llu

la
r

p
h

o
n

e
s

as
 E

m
b

e
d

d
e

d
 S

ys
te

m
s”

, I
SS

C
C

 2
0

0
4

]

2007

Inside the SmartPhone Revolution: the Apple I-Phone 3G

©SLD Group – Columbia University

[
So

u
rc

e
:

Se
m

ic
o

n
d

u
ct

o
r

In
si

gh
ts

]

The Growth of Specialized IP Blocks: The Apple A8 SoC

©SLD Group – Columbia University

Number of specialized IP blocks across five generations of Apple SoCs

[
So

u
rc

e
:

Sh
ao

 e
t

al
. 2

0
1

5
]

Out-of-Core
Accelerators

• The analysis of die photos from Apple’s A6, A7, and A8 SoCs
shows that more than half of the die area is dedicated to
blocks that are neither CPUs nor GPUs, but rather
specialized Intellectual Property (IP) blocks

• Many IP blocks are accelerators, i.e. specialized hardware
components that execute an important computation more
efficiently than software

A (Perhaps Easy?) Prediction:
No Single Architecture Will Emerge as the Sole Winner

©SLD Group – Columbia University

• The migration from homogeneous multi-core architectures
to heterogeneous System-on-Chip architectures will
accelerate, across almost all computing domains
• from IoT devices, embedded systems and mobile devices to data

centers and supercomputers

• A heterogeneous SoC will combine an increasingly diverse
set of components
• different CPUs, GPUs, hardware accelerators, memory hierarchies,

I/O peripherals, sensors, reconfigurable engines, analog blocks…

• The set of heterogeneous SoCs in production in any given
year will be itself heterogeneous!
• no single SoC architecture will dominate all the markets

Where the Key Challenges in SoC Design Are…

©SLD Group – Columbia University

• The biggest challenges are (and will increasingly be) found in the
complexity of system integration
– How to design, program and validate scalable

systems that combine a very large number of
heterogeneous components to provide a
solution that is specialized for a target class
of applications?

• How to handle this complexity?
– raise the level of abstraction to System-Level Design

– adopt compositional design methods with the Protocol & Shell Paradigm

– promote Design Reuse

What is Needed? To Think at the System Level.

©SLD Group – Columbia University

• Move from a processor-centric to an SoC-centric perspective

– The processor core is just one component among many others

• Develop platforms, not just architectures

– A platform combines an architecture and a companion design methodology

• Raise the level of abstraction

– Move from RTL Design to System-Level Design

• Promote Open-Source Hardware

– Build libraries of reusable components

Our System-Level Design Approach to Heterogeneous
Computing: Key Ingredients

• Develop Platforms, not just Architectures
• A platform combines an architecture and a companion design methodology

• Raise the level of abstraction
• Move from RTL Design to System-Level Design
• Move from Verilog/VHDL to high-level programming languages like SystemC
• Move from ISA and RTL simulators to Virtual Platforms
• Move from Logic Synthesis to High-Level Synthesis (both commercial and in-house tools), which is the

key to enabling rich design-space exploration

• Adopt compositional design methods
• Rely on customizable libraries of HW/SW interfaces to simplify the integration of heterogeneous

components

• Use formal metrics for design reuse
• Synthesize Pareto frontiers of optimal implementations from high-level specs

• Build real prototypes (both chips and FPGA-based full-system designs)
• Prototypes drive research in systems, architectures, software and CAD tools

©SLD Group – Columbia University

2. Proposed Architecture
• Embedded Scalable Platforms (ESP)

Outline

©SLD Group – Columbia University

3. Methodology and Design Flow
• with a Retrospective on

Latency-Insensitive Design

C1

C2
C3

C4

C5

C6
C7

RS

RS

RS

RS
RS

The Protocol & Shell
Paradigm

1. Motivation
• The Rise of Heterogeneous Computing

The ESP Scalable Architecture Template

©SLD Group – Columbia University

Template Properties
• Regularity

– tile-based design
– pre-designed on-chip

infrastructure for communication
and resource management

• Flexibility
– each ESP design is the result of a

configurable mix of
programmable tiles and
accelerator tiles

• Specialization
– with automatic high-level

synthesis of accelerators for key
computational kernels

• Processor Tiles
– each hosting at least one configurable processor

core capable of running an OS

• Accelerator Tiles
– synthesized from high-level specs

• Other Tiles
– memory interfaces, I/O, etc.

• Network-on-Chip (NoC)
– playing key roles at both design and run time

Possible Instance of an ESP Chip

Example of a System We Built:
FPGA Prototype to Accelerate Wide-Area Motion Imagery

©SLD Group – Columbia University

• Design: Complete design of WAMI-App
running on an FPGA implementation of
an ESP architecture

– featuring 1 embedded processor,
12 accelerators, 1 five-plane NoC, and 2
DRAM controllers

– SW application running on top of Linux
while leveraging multi-threading library
to program the accelerators and control
their concurrent, pipelined execution

– Five-plane, 2D-mesh NoC efficiently
supports multiple independent
frequency domains and a variety of
platform services

input output

Motion Detection from
WAMI-Application

NoC Planes Traffic

Power per Domain

SoC Map

Sampling Window

Frame Buffer

Console Interface

FPGA Infrastructure

[P. Mantovani , L. P. Carloni et al., An FPGA-Based
Infrastructure for Fine-Grained DVFS Analysis in
High-Performance Embedded Systems, DAC 2016]

ESP Architecture

©SLD Group – Columbia University

• RISC-V Processors

• Many-Accelerator

• Distributed Memory

• Multi-Plane NoC

The ESP architecture implements a
distributed system, which is scalable,

modular and heterogeneous,
giving processors and accelerators

similar weight in the SoC

ESP Architecture: Processor Tile

©SLD Group – Columbia University

• Processor off-the-shelf
o RISC-V Ariane (64 bit)

SPARC V8 Leon3 (32 bit)

o L1 private cache

• L2 private cache
o Configurable size

o MESI protocol

• IO/IRQ channel
o Un-cached

o Accelerator config. registers,

interrupts, flush, UART, …

ESP Architecture: Memory Tile

©SLD Group – Columbia University

• External Memory Channel

• LLC and directory partition
o Configurable size

o Extended MESI protocol

o Supports coherent-DMA

for accelerators

• DMA channels

• IO/IRQ channel

6

ESP Architecture: Accelerator Tile

©SLD Group – Columbia University

• Accelerator Socket

w/ Platform Services

o Direct-memory-access

o Run-time selection of

coherence model:

 Fully coherent

 LLC coherent

 Non coherent

o User-defined registers

o Distributed interrupt

Heterogeneous Applications Bring Heterogeneous Requirements

©SLD Group – Columbia University

Structure and Behavior of the Debayer Accelerator Data Structures of the PERFECT TAV Benchmarks

• While the Debayer structure and behavior is
representative of the other benchmarks, the specifics
of the actual computations, I/O patterns, and
scratchpad memories vary greatly among them

How to Couple Accelerators, Processors and Memories?

©SLD Group – Columbia University

• Private local memories (aka
scratchpads) are key to
performance and energy efficiency
of accelerators

• There are two main models of
coupling accelerators with
processors, memories
• Tightly-Coupled Accelerators

• Loosely-Coupled Accelerators

[E. G. Cota, P. Mantovani, G. Di Guglielmo, and L. P. Carloni,
An Analysis of Accelerator Coupling in Heterogeneous
Architectures, DAC’15]

Loosely-Coupled Accelerators (LCA)

Tightly-Coupled Accelerators (TCA)

The Key Role of the Private Local Memories (PLM)

©SLD Group – Columbia University

• Tailored, many-ported PLMs are key to
accelerator performance

• A scratchpad features aggressive SRAM
banking that provides multi-port
memory accesses to match the
multiple parallel blocks of the
computation datapath

– Level-1 caches cannot match this
parallelism

[C. Pilato, P. Mantovani, G. Di Guglielmo, and L. P. Carloni, System-Level
Optimization of Accelerator Local Memory for Heterogeneous Systems-
on-Chip. IEEE Trans. on CAD of Integrated Circuits and Systems, 2017.]

Private Local Memory

Exploiting PLMs to Reduce the Opportunity Cost of
Accelerator Integration

©SLD Group – Columbia University

• Two facts:

1. Accelerators are made mostly of memory

2. Average utilization of accelerator PLMs is
low

• Main observation:

– The accelerator PLM provide a de facto
NUCA substrate

• Key Idea:

– Extend the last level cache with the PLMs
of those accelerators that are not in use

[E. Cota, P. Mantovani, and L. P. Carloni, Exploiting Private
Local Memories to Reduce the Opportunity Cost of Accelerator
Integration, ICS ’16]

• Implementation:
– Minimal modification to accelerators

– Minimal area overhead

– Good Performance: a 6MB ROCA can realize
~70% of the performance/energy efficiency
benefits of a same-area 8MB S-NUCA

ESP Accelerator Socket

©SLD Group – Columbia University

ESP Software Socket

©SLD Group – Columbia University

k
e
rn

e
l

m
o

d
e

Linux

ESP core

ESP accelerator driver

u
s
e
r

m
o

d
e

ESP alloc

ESP Library

Application

• ESP accelerator API

o Generation of device driver

and unit-test application

o Seamless shared memory

/*

* Example of existing C application

* with ESP accelerators that replace

* software kernels 2, 3 and 5

*/

{

int *buffer = esp_alloc(size);

for (...) {

kernel_1(buffer,...); /* existing software */

esp_run(cfg_k2); /* run accelerator(s) */

esp_run(cfg_k3);

kernel_4(buffer,...); /* existing software */

esp_run(cfg_k5);

}

validate(buffer); /* existing checks */

esp_cleanup(); /* memory free */

}

The Large Data Set Problem for SoC Accelerators

©SLD Group – Columbia University

• Finding a high-performance and low-overhead mechanism that allows
hardware accelerators to process large data sets without incurring penalties
for data transfers • Solution :

– a low-overhead accelerator virtual address space,
which is distinct from the processor virtual address
space;

– direct sharing of physical memory across processors
and accelerators;

– a dedicated DMA controller with specialized
translation look aside buffer (TLB) per accelerator;

– hardware and software support for implementing
run-time policies to balance traffic among available
DRAM channels.

[P. Mantovani, E. Cota, C. Pilato, G. Di Guglielmo and L. P. Carloni,
Handling Large Data Sets for High-Performance Embedded
Applications in Heterogeneous Systems-on-Chip. CASES 2016]

ESP Platform Services

©SLD Group – Columbia University

Miscellaneous Tile Memory Tile

Accelerator tile Processor Tile
DMA

Reconfigurable coherence

Point-to-point

ESP or AXI interface

DVFS controller

Coherence

I/O and un-cached memory

Distributed interrupts

DVFS controller

Debug interface

Performance counters access

Coherent DMA

Shared peripherals (UART, ETH, …)

Independent DDR Channel

LLC Slice

DMA Handler

The Twofold Role of the Network-on-Chip

©SLD Group – Columbia University

• At Design Time
– simplifies integration of

heterogeneous tiles to
balance regularity and
specialization

• At Run Time
– energy efficient inter-tile

data communication
with integrated support
for fine-grain power
management and other
services

• A scalable NoC is instrumental to accommodate heterogeneous concurrency and
computing locality in ESP

• The NoC Interface interacts directly with the Tile Socket that supports the ESP Platform Services
– communication/synchronization channels among tiles
– fine-grain power management with dynamic voltage-frequency scaling
– seamless dynamic support for various accelerator coherence models

Cache Coherence and Loosely-Coupled Accelerators

©SLD Group – Columbia University

• An analysis of the literature indicates that there are three main cache-
coherence models for loosely-coupled accelerators:

1. Non-Coherent Accelerator

– the accelerator operates through DMA bypassing the processor caches

2. Fully-Coherent Accelerator

– the accelerator issues main-memory requests that are coherent with the entire cache
hierarchy

• this approach can endow accelerators with a private cache, thus requiring no updates to the
coherence protocol

3. Last Level Cache (LLC)-Coherent Accelerator

– the accelerator issues main-memory requests that are coherent with the LLC, but not
with the private caches of the processors

• in this case, DMA transactions address the shared LLC, rather than off-chip main memory

Example: NoC Services to Support Heterogeneous
Cache-Coherence Models for Accelerators

©SLD Group – Columbia University

[D. Giri, P. Mantovani, and L. P. Carloni, Accelerators &
Coherence: An SoC Perspective. IEEE MICRO, 2018.]

• Seamless dynamic support
for 3 coherence models:

– Fully coherent accelerators

– Non-coherent accelerators

– Last-Level-Cache (LCC)
coherent accelerators

Network-on-Chip

Extending ESP to Support Heterogeneous Cache-Coherence
Models for Accelerators

©SLD Group – Columbia University

• First NoC-based system enabling the
three models of coherence for
accelerators to coexist and operate
simultaneously through run-time
selection in the same SoC

– Design based on ESP Platform Services

• Extension of the MESI directory-
based protocol to integrate LLC-
coherent accelerators into an SoC

– The design leverages the tile-based
architecture of ESP over a packet-
switched NoC to guarantee scalability
and modularity

Heterogeneous Coherence Implementation

©SLD Group – Columbia University

• The CAD Infrastructure of ESP
allows

– direct instantiation of heterogeneous
configurable components from
predesigned libraries

– fully automated flow from the GUI to
the bitstream for FPGAs

• Extension of ESP to support
atomic test-and-set and
compare-and-swap operations
over the NoC allows

– running multi-processor and
multi-accelerator applications
on top of Linux SMP

[D. Giri, P. Mantovani, L. P. Carloni, Accelerators & Coherence:
An SoC Perspective, IEEE Micro, Nov/Dec 2018]

2. Proposed Architecture
• Embedded Scalable Platforms (ESP)

Outline

©SLD Group – Columbia University

3. Methodology and Design Flow
• with a Retrospective on

Latency-Insensitive Design

C1

C2
C3

C4

C5

C6
C7

RS

RS

RS

RS
RS

The Protocol & Shell
Paradigm

1. Motivation
• The Rise of Heterogeneous Computing

©SLD Group – Columbia University

ESP Vision: Domain Experts Can Design SoCs

Rapid
Prototyping

SoC Integration

A
p

p
lic

at
io

n
 D

ev
el

o
p

er
s

H
ar

d
w

ar
e

D
es

ig
n

er
s

*
*

 B
y

le
w

in
g

@
is

c.
ta

m
u

.e
d

u
L

ar
ry

 E
w

in
g

 a
n

d
 T

h
e

G
IM

P

**

…

…

…accelerator

accelerator

accelerator
HLS

Design
Flows

RTL
Design
Flows

*
 B

y
N

vi
d

ia
 C

o
rp

o
ra

ti
o

n

*

ESP Methodology In Practice

©SLD Group – Columbia University

interactive
automated

manual
manual (opt.)

Generate accelerator

Test behavior

Generate RTL

Test RTL

Optimize RTL

Specialize accelerator
* this step is automated
* for ML applications

Accelerator Flow

A
p

p
lic

at
io

n
 D

ev
e

lo
p

e
rs

H
ar

d
w

ar
e

D
es

ig
n

e
rs

HLS
Design
Flows

RTL
Design
Flows

…

…

…
accelerator

accelerator

accelerator

Compile bare-metal

Simulate system

Implement for FGPA

Generate sockets

Configure RISC-V SoC

SoC Flow
…

…

…
accelerator

accelerator

accelerator

Compile Linux

Deploy prototype

Configure runtime

**

ESP Design Example: An Accelerator for WAMI

©SLD Group – Columbia University

• We designed 12 accelerators starting from a C “programmer-view” reference
implementation
• Methodology to port C into synthesizable SystemC

• Automatic generation of customized RTL memory subsystems for each accelerator

Debayer

Change-Detection

Warp (grayscale) Gradient

Subtract Warp (dx) Warp (dy)

Steep.-Descent

SD-update Hessian

Matrix-Mult

Matrix-Invert

Reshape

Matrix-Add

Warp (iwxp)

fe
ed

b
a

ck

fe
ed

b
a

ck

feedback

Grayscale

Lucas-Kanade

fe
ed

b
a

ck

input output

Lines of Code
Kernels C SystemC RTL
Debayer 195 664 8440
Grayscale 21 368 4079
Warp 88 571 6601
Gradient 65 540 12163
Subtract 36 379 4684
Steep.-Descent 34 410 8744
SD-Update 55 383 7864
Hessian 43 358 7042
Matrix-Invert 166 388 7392
Matrix-Mult 55 307 2708
Reshape 42 269 2160
Matrix-Add 36 287 2310
Change-Detect. 128 939 18416

Total 964 5863 92603

[P. Mantovani, G. Di Guglielmo, and L. P. Carloni, High-Level Synthesis
of Accelerators in Embedded Scalable Platforms, ASPDAC 2016]

• The PERFECT WAMI-app is an image processing pipeline in behavioral C
code
• From a sequence of frames it extracts masks of “meaningfully” changed

pixels

• Complex data-dependency among kernels

• Computational intensive matrix operations

• Global-memory access to compute ratio 45%

• Floating-point operation to compute ratio 15%

Example of Accelerator Design with HLS: Debayer - 1

©SLD Group – Columbia University

• The 3 processes execute in pipeline
– on a 2048×2048-pixel image, which is

stored in DRAM, to produce the
corresponding debayered version

• The circular buffer allows the reuse
of local data, thus minimizing the
data transfers with DRAM

• The ping-pong buffer allows the
overlapping of computation and
communication

High-Level Synthesis Drives Design-Space Exploration

©SLD Group – Columbia University

• Given a SystemC specification,
HLS tools provide a rich set of
configuration knobs to synthesize
a variety of RTL implementations

– these implementations have
different micro-architectures and
provide different cost-performance
trade-offs

• Engineers can focus on revising
the high-level specification

– to expose more parallelism, remove
false dependencies, increase
resource sharing…Performance

A
re

a
 /

P
o

w
e

r 3

2

1

Code Transformation

High-Level Synthesis

Ver. 1

Ver. 2

Ver. 3

RTL
Design Space

Programmer View
Design Space

Example of Design-Space Exploration:
Accelerator for the SAR Interp-1 Kernel

©SLD Group – Columbia University

Pareto Set Obtained with
High-Level Synthesis

(1GHz@1V, CMOS 32nm)
function interp1()

{

for(...)

{

accum = 0;

for(...)

{

accum += sinc(input);

}

store(accum);

}

}

Main loop in Interpolation-1 kernel

• Presence of expensive combinational
function (sinc()) in the inner most loop

• Use of “loop knobs” provided by HLS tools to
optimize for power and performance

• Derivation of Pareto set highlighting Power-
Performance trade-offs

From SystemC Specification to Alternative RTL
Implementations via High-Level Synthesis

©SLD Group – Columbia University

SC_MODULE(mac)

P

rst

clk

in_coeff

in_data

out_data

+×
P

P

P

Pacc = 0;

while(true) {

wait();

out_data = acc +

in_data * n_coeff;

}

SC_CTHREAD(beh)

High-Level Synthesis

Configuration Knobs
(HLS Script)

mpy

a
d
d
e
r

Clk

mpy

a
d
d
e
r

Clk

Virtual (or Logical)
Clock

Real (or Physical)
Clock

From SystemC Specification to Alternative RTL
Implementations via High-Level Synthesis

©SLD Group – Columbia University

SC_MODULE(mac)

P

rst

clk

in_coeff

in_data

out_data

+×
P

P

P

Pacc = 0;

while(true) {

wait();

out_data = acc +

in_data * n_coeff;

}

SC_CTHREAD(beh)

High-Level Synthesis

Configuration Knobs
(HLS Script)

mpy

a
d
d
e
r

Clk

mpy

a
d
d
e
r

Clk

Virtual (or Logical)
Clock

Real (or Physical)
Clock

From SystemC to RTL via HLS: Two Key Questions

©SLD Group – Columbia University

• In which sense each implementation is correct
with respect to the original specification?

• How to find the best implementation?

From SystemC to RTL via HLS: Optimality

©SLD Group – Columbia University

• How to compare
various synthesized
implementations?

– in terms of cost

– in terms of
performance

• Which
implementation is
better?

• This implementation has
lower latency and lower
area but also runs at
lower (physical) clock
frequency

• This implementation runs at
higher (physical) clock
frequency and offers higher data
throughput but costs a bit more
area

From SystemC to RTL via HLS: Correctness

©SLD Group – Columbia University

• Which notion of
equivalence to use?
– between the

synthesized
implementation and
the original
specification

– among many
alternative
implementations?

• How to compare
the I/O traces of
the two
implementations?

inData inCoeff x outData

3 2 0 0

5 1 6 6

7 2 11 11

9 1 25 25

34 34

34 34

inData inCoeff y x outData

3 2 0 0 0

5 1 6 0 0

7 2 5 6 6

9 1 14 11 11

9 25 25

34 34

Retrospective: Latency-Insensitive Design [Carloni et al. ’99]

©SLD Group – Columbia University

C1

C2
C3

C4

C5

C6
C7

RS

RS

RS

RS
RS

Latency-Insensitive Design

• is the foundation for the flexible synthesizable RTL
representation

• anticipates the separation of computation from
communication that is proper of TLM with SystemC
– through the introduction of the Protocols & Shell paradigm

The Arrival of Nanometer Technologies in Mid Nineties
Percentage of Reachable Die

©SLD Group – Columbia University

• “For a 60-nanometer process a signal can reach only 5% of the die’s length in a clock cycle” [D. Matzke, ‘97]

• Cause: Combination of higher clock frequencies and slower wires

0

20

40

60

80

100

250 180 130 100 80 60

16 clock cycles

8 clock cycles

4 clock cycles

2 clock cycles

1 clock cycle

%

nm

Nanometer Technologies:
Chips Become Distributed Systems

©SLD Group – Columbia University

• Interconnect Latency

– hard to estimate because affected by many phenomena

• process variations, cross-talk, power-supply drop variations

– breaks the synchronous assumption

• that lies at the basis of design automation tool flows

Local (scaled-length) wires
• span a fixed number of gates,

scale well together with logic

Global (fixed-length) wires
• span a fixed fraction of a die,

do not scale

scaling

The Traditional Design Flow and the Timing Closure Problem

©SLD Group – Columbia University

• Founded on the synchronous
design methodology
– longest combinational path (critical

path) dictates the maximum operating
frequency

– operating frequency is often a design
constraint

– design exception: a path with delay
larger than clock period

RTL constraints
w/ statistical

wire load models

logic
synthesis

constraints
met?

floorplanning /
coarse placement

detailed placement /
placement merge

constraints
met?

re-optimization
(buffering,sizing,

fanout opt.,
critical path opt.

routing /
layout merge

constraints
met?

in-place optimization
(buffering, sizing)

final layout
[Kapadia et al., DAC ’99]

• Many costly iterations
between synthesis and layout
because
– steps are performed independently
– accurate estimations of global wire

latencies are impractical
– statistical delay models badly estimate

post-layout wire load capacitance

Wire Buffering and Wire Pipelining

©SLD Group – Columbia University

• Wire Delay
– grows quadratically with wire length

• Wire Buffering
– if optimal makes wire delay grow linearly with its length

– reduces the increase of wire delay vs. gate delay ratio in future
process technologies

• from 2000X to 40X for global wires

• from 10X to 3X for local wires

• Wire Pipelining
– is necessary to meet specified

clock period

Stateless Repeaters vs. Stateful Repeaters

©SLD Group – Columbia University

• Both buffers and flip-flops are wire repeaters

– regenerate the signals traveling on long wires

• Stateful repeaters

– storage elements, which carry a state

• flip-flops, latches, registers, relay stations…

• generally, the state must be initialized

• Inserting stateful repeaters impacts surrounding control logic

– if the interface logic of two communicating modules assumed a certain
latency, then costly rework is necessary to account for additional
pipeline stages

– necessary formal methods to enable automatic insertion

Latency-Insensitive Design and
the Protocol & Shell Paradigm [Carloni et al. ’99]

©SLD Group – Columbia University

Channels (short wires)

Channels (long wires)

Shells (interface logic blocks)

P1

P2

P3

P4

P5

P6

P7

Pearls (synchronous IP cores)

Correct-by-Construction Design Methodology Enables
Automatic Wire Pipelining

©SLD Group – Columbia University

Shells (interface logic blocks)

Channels (short wires)

Channels (long wires)

P1

P2

P3

P4

P5

P6

P7

Pearls (synchronous IP cores)

RS

RS
RS

RS

RS

RS RS

RS

Relay Stations

Relay Stations are sequential elements initialized with void data items

Compositionality &
Theory of Latency-Insensitive Design [Carloni et al. ’99]

©SLD Group – Columbia University

• For patient processes the notion of latency equivalence is compositional

• Major Theoretical Result

– if all processes in a strict system are replaced by corresponding patient
processes then the resulting system is latency equivalent to the original one

– Th.1: P1 and P2 patient  P1  P2 patient

– Th.3: for all strict P1, P2 and patient Q1, Q2
P1  Q1 and P2  Q2  (P1  P2)  (Q1  Q2)

– Th.2: for all patient P1, Q1, P2, Q2
P1  Q1 and P2  Q2  (P1  P2)  (Q1  Q2)

LID Building Blocks:
Shell (with backpressure)

©SLD Group – Columbia University

• The theory of LID leaves open the
possibility of developing various
latency-insensitive protocols, each
with a supporting implementation
of the LID building blocks, i.e.
shells and relay stations

• This is a possible implementation
of a 2-input 2-output shell for a
latency-insensitive protocol with
one-stop-to-stall backpressure
– the organization is general and can

be easily scaled to an any I/O
number

– all output signals are clocked at the
output of edge-triggered flip-flops

– the minimum forward latency of
the bypassable queue is zero

LID Building Blocks: Relay Station

©SLD Group – Columbia University

• A relay station is a clocked (stateful) buffer with
– twofold storage capacity
– simple control flow logic implemented as a 2-state Mealy FSM

• Note that the value of the stopOut bit depends only on the current state of the controller, and
thus no combinational path exists between stopIn and stopOut

Benefits of the Protocols & Shells Paradigm

©SLD Group – Columbia University

C1

C2
C3

C4

C5

C6
C7

RS

RS

RS

RS
RS

The Protocol & Shells Paradigm

• preserves modularity of synchronous assumption in
distributed environment

• guarantees scalability of global property by construction
and through synthesis

• simplifies integrated design & validation by decoupling
communication and computation, thus enabling reusability

• adds flexibility up to late stages of the design process

Example: Combining LID and HLS in the Design
of the Debayer Accelerator

©SLD Group – Columbia University

• The combination of the ESP interface and
the latency-insensitive protocol enable a
broad HLS-supported design-space
exploration

[C. Pilato, P. Mantovani, G. Di Guglielmo, and L. P. Carloni, System-Level Optimization of
Accelerator Local Memory for Heterogeneous Systems-on-Chip, TCAD ’17]

• For example, for the compute process
– Implementation E is obtained by unrolling

loop L3 for 2 iterations, which requires 2
concurrent memory-read operations

– Implementation F is obtained by unrolling L3
for 4 iterations to maximize performance at
the cost of more area, but with only 2
memory-read interfaces; this creates a
bottleneck because the 4 memory operations
cannot be all scheduled in the same clock
cycle

– Implementation G, which Pareto-dominates
implementation F, is obtained by unrolling L3
for 4 iterations and having 4 memory-read
interfaces to allow the 4 memory-read
operations to execute concurrently

ESP Accelerator Flow

©SLD Group – Columbia University

Developers focus on the high-level specification, decoupled from

memory access, system communication, hardware/software interface
A

p
p

lic
at

io
n

 D
ev

el
o

p
er

s
H

ar
d

w
ar

e
D

es
ig

n
er

s

HLS
Design
Flows

RTL
Design
Flows

Performance

A
re

a
 /

P
o

w
e

r

3

2

1 High-Level Synthesis

Code Transformation

Ver. 1

Ver. 2

Ver. 3

RTL
Design Space

Programmer View
Design Space

…

…
accelerator

accelerator

accelerator

ESP Interactive SoC Flow

©SLD Group – Columbia University

SoC Integration

…

…

…accelerator

accelerator

accelerator

“So, Why Most SoCs are Still Designed Starting from
Manually-Written RTL Code?”

©SLD Group – Columbia University

• Difficult to pinpoint a single cause…

– Natural inertia of applying best practices

– Organization of engineering divisions are based on well-established sign-off
points of traditional CAD flows

– Limitations of existing SLD tools (for HLS, verification, virtual platforms..)

– Shortage of engineers trained to work at the SLD level of abstraction

• Arguably, a chicken-and-egg problem

– the lack of bigger investments in developing SLD methodologies and tools is due
to a lack of demand from engineers; conversely, the lack of this demand is due
to the shortcomings of current SLD methodologies and tools

– Academia should take the lead in breaking this vicious cycle

CSEE-4868: System-on-Chip Platforms

©SLD Group – Columbia University

• Foundation course on the programming, design, and validation of SoCs with
emphasis on high-performance embedded applications

• Offered at Columbia since 2011, moved to upper-level curriculum in Fall 2016
– required course for CE BS program, elective for MS programs in CS and EE

• Course Goals

– mastering the HW and SW aspects of integrating heterogeneous components into a
complete system

– designing new components that are reusable across different systems, product
generations, and implementation platforms

– evaluating designs in a multi-objective optimization space

[L. P. Carloni et al. Teaching Heterogeneous Computing with System-Level Design Methods, WCAE 2019]

CSEE-4868 – Course Structure

©SLD Group – Columbia University

• The course consists of two main tracks that run in parallel throughout
the semester

1. Theory Track:

• Lectures on principles of system-level design, models of computation, latency-
insensitive design, virtual prototyping, design-space exploration, HW/SW co-design,
SoC architectures
– Illustrated with case studies of recent SoCs from industry and academia

2. Practice Track

• Lectures on SystemC and transaction-level modeling, SW application and driver
programming with virtual platforms, and HW accelerator design with HLS tools
– extensive use of commercial tools (e.g. for HLS) and in-house tools (e.g. virtual platform,

memory optimization)

Teaching System-on-Chip Platforms at Columbia:
The Fall-2015 Course Project in Numbers

©SLD Group – Columbia University

• At Columbia we developed the course
‘CSEE-6868 System-on-Chip Platforms’
based on the ESP Design Methodology

• The Fall-2015 Project by Numbers
– 21 student teams competed in designing a hardware

accelerator for the WAMI Gradient kernel during a
1-month period

– 661: Number of improved designs across all teams
– 31.5: Average number of improved designs per team
– 1.5: Average number of improved designs committed

each day per team
– 99: Total number of changes of the Pareto curve

over the project period
– 11: Final number of Pareto-optimal designs
– 26X: Performance range of final Pareto curve
– 10X: Area range of final Pareto curve

Scaling Up the Design Complexity:
The Fall-2016 Course Project

©SLD Group – Columbia University

• Fall-2016 New Features
– Cloud-based project environment
– Introduction of IP reuse and

compositional system-level design

• The Fall-2016 Project by Numbers
– 15 student teams competed

in designing a system
combining DCT and IDCT
accelerators

– 302: Number of improved
module designs across
all teams

– 20.5: Average number of
improved module designs
per team

– 12.1: Average number of
improved module designs
per day

– 20: Total number of days
when the Pareto curve of
the system changed

– 20: Final number of
Pareto-optimal designs

– 24X: System performance range
– 4X: System area range

Zoom Zoom Zoom

DCT

IDCT
System

Keep Scaling Up the Design Complexity:
The Fall-2017 Course Project

©SLD Group – Columbia University

• Competitive and
collaborative system-
level design-space
exploration of a CNN
accelerator

– partitions of the set of
student teams compete
on the reusable design
of an given CNN stage

– all teams combine their
stage design with the
designs they “license”
for the other stage to
compete for the design
of the overall CNN

NVIDIA MatchLib

©SLD Group – Columbia University

In Summary

©SLD Group – Columbia University

• Computer architectures are increasingly heterogeneous

• Heterogeneity raises design complexity

• Coping with complexity requires

1. raising the level of abstraction in hardware design and

2. embracing design for reusability

• High-level synthesis is a key technology to meet both requirements

• Flexible interfaces based on LID Protocols & Shells Paradigm are
critical for composing circuits synthesized with HLS

• ESP is an open-source platform for heterogeneous SoC design that
we developed based on these principles and practices

ESP for Open-Source Hardware

©SLD Group – Columbia University

• We contribute ESP to the OSH community
in order to support the realization of
– more scalable architectures for SoCs

that integrate
– more heterogeneous components,

thanks to a
– more flexible design methodology,

which accommodates different
specification languages and design flows

• ESP was conceived as a heterogeneous
integration platform from the start and
tested through years of teaching at
Columbia University

• We invite you to use ESP for your
projects and to contribute to ESP!

https://www.esp.cs.columbia.edu

Some Recent Publications

©SLD Group – Columbia University

Available at www.cs.columbia.edu/~luca

1. L. P. Carloni. From Latency-Insensitive Design to Communication-Based System-Level Design The Proceedings
of the IEEE, Vol. 103, No. 11, November 2015.

2. L. P. Carloni. The Case for Embedded Scalable Platforms DAC 2016. (Invited Paper).
3. L. P. Carloni et al. Teaching Heterogeneous Computing with System-Level Design Methods, WCAE 2019.

4. E. G. Cota, P. Mantovani, G. Di Guglielmo, and L. P. Carloni. An Analysis of Accelerator Coupling in
Heterogeneous Architectures. DAC 2015.

5. P. Mantovani, E. Cota, K. Tien, C. Pilato, G. Di Guglielmo, K. Shepard and L. P. Carloni. An FPGA-Based
Infrastructure for Fine-Grained DVFS Analysis in High-Performance Embedded Systems. DAC 2016.

6. P. Mantovani, E. Cota, C. Pilato, G. Di Guglielmo and L. P. Carloni. Handling Large Data Sets for High-
Performance Embedded Applications in Heterogeneous Systems-on-Chip. CASES 2016.

7. P. Mantovani, G. Di Guglielmo and L. P. Carloni. High-Level Synthesis of Accelerators in Embedded Scalable
Platforms. ASPDAC 2016.

8. L. Piccolboni, P. Mantovani, G. Di Guglielmo, and L. P. Carloni. COSMOS: Coordination of High-Level Synthesis
and Memory Optimization for Hardware Accelerators. ACM Transactions on Embedded Computing Systems,
2017.

9. C. Pilato, P. Mantovani, G. Di Guglielmo, and L. P. Carloni. System-Level Optimization of Accelerator Local
Memory for Heterogeneous Systems-on-Chip. IEEE Trans. on CAD of Integrated Circuits and Systems, 2017.

10.D. Giri, P. Mantovani, and L. P. Carloni. Accelerators & Coherence: An SoC Perspective. IEEE MICRO, 2018.

©SLD Group – Columbia University

System Level Design Group

Thank you from the ESP team!

https://esp.cs.columbia.edu

https://github.com/sld-columbia/esp

https://esp.cs.columbia.edu/
https://github.com/sld-columbia/esp

