ESP: The Open-Source SoC Platform

Luca Carloni

Department of Computer Science
Columbia University in the City of New York

International Conference on VLSI Design & International Conference on Embedded Design
Bangalore, India, January 5", 2020

=
71

©SLD Group — Columbia University s z &2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

Open Source Release Of ESP https://www.esp.cs.columbia.edu

=i |
mas Home Resources v News Team Contact

ESP

the open-source SoC platform

o W o o Latest Posts

The ESP Vision

ESP is an open-source research platform for heterogeneous system-on-chip design that combines a flexible
tile-based architecture and a modular system-level design methodology.

—— L4
hls 4 ml #i—:’g!]
. O PyTorch N=a

Upcoming talk at
VLSID & ES 2020

Prze . N
‘0 accelerator

Application Developers

January 5th at the
International Conference on
VLS| Design and

HLS = in Bangalore
® Design =
cA Fl We will give a talk about ESP
III — Bt in Bangalore (India) on
]

Hardware
Designers

+# By lewing@isc.tamu.edu Larry Ewing and The GIMP

RTL § International Conference on
Design § Embedded Design (VLSID &
Flows H ES).
ESP provides three accelerator flows: RTL, high-level synthesis (HLS), machine learning frameworks. All three
design flows converge to the ESP automated SoC integration flow that generates the necessary hardware and _
software interfaces to rapidly enable full-system prototyping on FPGA. Published: Jan 2, 2020

=t &2 COLUMBIA UNTVERSITY
‘ ‘ IN THE CITY OF NEW YORK

©SLD Group — Columbia University

Why ESP?

CPU" . GpU
s >< -
Accelerator .
. Heterogeneous systems are pervasive
Integrating accelerators into a SoC s hard
Doing so in a scalable way is very hard

Keeping the system simple to program while doing so is even harder

Embedded SoC

ESP makes it easy

ESP combines a scalable architecture with a flexible methodology

ESP enables several accelerator design flows
and takes care of the hardware and software integration

P=aN
E‘E !i &2 COLUMBIA UNIVERSITY
.-‘ IN THE CITY OF NEW YORK

©SLD Group — Columbia University

ESP Vision: Domain Experts Can Design SoCs

(9p]
| -
g
o I \ his 4 ml EE,:IEIBE 4
v O PyTorch
Q —_— PaN
a _gu accelerator
= HLS -
9 : P=N
2 @ Design _5e accelerator
o I I @ ~ Flows = .
= p * O
Q_ O
o I NVDLA.org 2
< : o
EEE P=N >
. > Han _ga accelerator “;;
(O §
o ©
5 .
g c O |crsec y RTL S £
O -5 I‘\ E— Design 8%
©c SystemVerilog Flows S &
z X

&2 COLUMBIA UNTVERSITY
IN THE CITY OF NEW YORK

©SLD Group — Columbia University

Outline

::.!“: ‘ " e «
MM & DL A¢cels
-7 s

1. Motivation

e The Rise of Heterogeneous Computing

2. Proposed Architecture
e Embedded Scalable Platforms (ESP)

3. Methodology and Design Flow

e with a Retrospective on
Latency-Insensitive Design

The Protocol & Shell
Qaradigm

Pa
< HR

2 b
©SLD Group — Columbia University NV | s g%&UMBIA UNIVERSITY

CITY OF NEW YORK

Heterogeneous Architectures Are Emerging Everywhere

Processing System

lvyTown Xeon + Stratix V FPGA

EyeQ4-High
block diagram - - - ~ ~ DDRAAAL, || DisplayPort
9 Accelerating Workloads using Xeon and coherently attached FPGA in-socket Quad ARM Cortex™-A53 e ARM Mali'- 400 MP \PDORAS,
Flating Peint Uit
- PODRY ECC Support || USB30
328 348 Memoy Geomety [2Puel
s ||| o I-Cache D-Cache | Management Processor | Processors SATA3.0
rolier — with Paity | with £CC Unit
[— lr:vrruzl e:(::r" E5-26xxv2 ‘Memory Management Unit PCle Gen2
SCU | GC | CCYSMMU | IMB L2 Cache/ECC
— T FPGAModule Altera Strati v l l SAB LA Cacke PSR
mCPU = :scm:m:wlso:mm QPi Spesd 6.4 GT/s full width
Lo — Intel’ Xeon®)
§ sl — E5-2600v2 Memary 10 FPGA | 2 channels of DDR3 (natused e ”“}‘!"‘2 Gigabit Ethernet
& [interaptiv N ——r Product Family Module on HARP platform) Dual ARM Cortex™RS L HES D AN
A o Confi Memory Protection o [
L) v guration Agent, Caching Uit
® Feawres Agent, (optional) Memaory UART
Controller 1288 1cH | 3206 1-Cache | 32/@0-Cacte 120
o) Accelerator Abstraction Layer with ECC with ECC Quad SPINOR
v . (AAL) runtime, drivers, sample R | Vonazemnt
1Ghz L applications i
0.75Ghz

1 1 1
-

4
Serial Flash i Programmable Logic
- o e
L nterconnect & 1 “ l Storage and Signal Processing High Speed Connectivity ~Video Codec
i lock RAM
Peripheral Transport Oualll'y of 1Ghz LES SepenaFixposelo H.265/H.264
Manager (PTM) SORMICOMEE| T
= [rcc iz | ———
24116K n T

e B S [Source: “Xeon+FPGA Tutorial @ ISCA’16”] [Source: www.xilinx.com/]

{
e

84K SP I =
Ld + 64KB

oo S — [Source: N

3 x ———
P CETZParn
uart | GPio | g SPL 3 x mipl &Lane RCC [

ous [oia] & [o Nl https://cIoudplatform.googleblog.c»om./]

N — A\
oF Video_out,)
E]

|

=

Mas(er:)Slave HOW i't Works
[Source: www.mobileye.com/] Fp—

!

AWS MARKETPLACE

DEVELOPMENTKIT Loeie FPGA IMAGE (AFD L 2 | r | Network switch (top of rack, cluster)]
!
9999 /\ -
8 i \ ~——— FPGA - switch link
........... > RS 588 88 & 4 | L |
IS \ A £ FPGA acceleration board
Bt B ;\ . —— NIC—FPGA link
f LS (18 /7 2-socket CPU server 2-socket server blade
/ J
/
/
F1 INSTANCE / \ 1
: [Datacenter hw acceleration plane
ANNOUNCING Jigh DEVELOP DEPLOY OFFER PURCHASE [or [Tor HARAHEA
J ¥

Gen3 2x8

. /’Deepnemi E ;i
DRIVE XAVIER SAMPLING IN Q1] Amason FGA mages dreoty o1 onmenwe 0 aaimedonAws e £
[f S bgtpdy ;

(AFI) using the instances and take Marketplace for other Marketplace to quickly Web search ®
ki Bioinformatics 3

Hardware advantage of all the customers. implement commaon TRNKINE. 5

Development Kit scalability, agility, and hardware T §

(HDK) and full set of security benefits of accelerations. 1 }'/ ~ g

design tools and ECZ2. . ! — P

simulators. Biking - ‘ 40Gb/s]

[Source: https://aws.amazon.com/ec2/instance-types/fl1/] jliasikenslew] SECIEEErRins

[Source: https://blogs.nvidia.com/] — [Source: www.microsoft.com/]

oo
©SLD Group — Columbia University [L’ COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

From Microprocessors to Systems-on-Chip (SoC)

Nehalem Design Scalable Via Modularity

1985 2008

Nehalem Building Ex: 4 Core Ex: 8 Core
Block Library,

Cache Clock Intel386™ DRAM Nehalem ‘
Control Gen. [™ Processor Control Processor \
""" I iGraphics [

Intel387 Math
SRAM SRAM Co-processor

DRAM DRAM

[Source: M. Bohr 2009]

Sample Range of Product Options

Source Intel.com [P. Gelsinger

Press Briefing, Mar’08]

sent actual product

|
™ "
leteses ~eha.sm ~ : 4.1 14nm 6th-Generation Core Processor SoC with
Transistor Count: 280 thousand 731 million ki g 7 Low Power chsump"u" and |mpr0ved
Frequency: 16 MHz >3.6 GHz = 5 ; sz iy Performance
Cores: 1 4 . .
— N 8 MB Eyal Fayneh, Marcelo Yuffe, Ernest Knoll, Michael Zelikson,
aclievles: one Muhammad Abozaed, Yair Talker, Ziv Shmuely, Saher Abu Rahme
I/O Peak Bandwidth: 64 MB/sec 50 GB/sec _
Adaptive Circuits: None Sleep Mode Intel, Haifa, Israel
Turbo Mode Eu L - : - 2l . « . :
Power Gating : Y ; ! !ntel 3.6. g_ennerat'mn Core processor (codg nameq Sky!ake qr_.S_KL) was de§|g_ned

Adaptive Frequency Clocking

&2 COLUMBIA UNTVERSITY

IN THE CITY OF NEW YORK

©SLD Group — Columbia University

The System Migrates into The Chip: Evolution of Mobile Phones

(RF PWE only)
[1) IF SUBSAMPLING RX
— |Q-MODULATION &
| UPCONVERSION TX
DIRECT CONVERSION
RX AND TX

“Ho|'
3,

]
i8a

M-

&
=
®
)
=

i ‘@ G

B

TRIPLE
T

[Source: Y. Neuvo, “Cellular phones as Embedded Systems”, ISSCC 2004]

P=aN
E‘ E !ﬂ &2 COLUMBIA UNIVERSITY
‘—‘ IN THE CITY OF NEW YORK

©SLD Group — Columbia University

Inside the SmartPhone Revolution: the Apple I-Phone 3G

©SLD Group — Columbia University

SST
SST25VF080B

- 1 MB Serial Flash

NATIONAL
SEMICONDUCTOR
LM2512AA

Display Interface

BROADCOM
BCM5974
Touchscreen
Controller

WOLFSON
WM6180C
Audio Codec

insights™

Semiconductor

SAMSUNG ST MICROELECTRONICS INFINEON SKYWORKS
Application LIS331 DL SMP3i ' SKY77340
Processorand Accelerometer SMARTi Power Power Amp. Mod
DDR SDRAM Management IC

LINEAR TECHNOLOGY NXP

INFINEON
PMB2525
Hammerhead Il GPS

LTC4088-2
Battery Charger/
USB Controller

Power Management

ule
INFINEON
UMTS Transceiver

TRIQUINT
TQM666032
WCDMA/HSUPA
Power Amp.

TRIQUINT
TQM676031
WCDMA/HSUPA
Power Amp.

TRIQUINT
TQM616035
WCDMA/HSUPA
Power Amp.

NUMONYX
PF38F3050M0YOCE
16 MB NOR + 8 MB
Pseudo - SRAM

[Source: Semiconductor Insights]

INFINEON
Digital Baseband
Processor

P=
< HR
h=d

&2 COLUMBIA UNTVERSITY

IN THE CITY OF NEW YORK

The Growth of Specialized IP Blocks: The Apple A8 SoC

— - Number of specialized IP blocks across five generations of Apple SoCs
ophiaShao :
@Harvard 30

N
(6)]
%

n
o
T

p—
($)]
T

No. of specialized IP blocks

s
(=}
T

SRAM Cache

[Source: Shao et al. 2015]

A7 A8

I ¢ The analysis of die photos from Apple’s A6, A7, and A8 SoCs
Quad-Cors GPU i hur shows that more than half of the die area is dedicated to

blocks that are neither CPUs nor GPUs, but rather
specialized Intellectual Property (IP) blocks

e Many IP blocks are accelerators, i.e. specialized hardware
components that execute an important computation more
efficiently than software

A
71 |

P b
©SLD Group — Columbia University NV | s E]CT)IE:{;’:ATEL?NISVIV\IYIO\;ERSITY

A (Perhaps Easy?) Prediction:
No Single Architecture Will Emerge as the Sole Winner

* The migration from homogeneous multi-core architectures sxgsemeermgmras
to heterogeneous System-on-Chip architectures will IR \;f”f N
accelerate, across almost all computing domains el (b= "1

* from loT devices, embedded systems and mobile devices to data /s{_;///"*\f AL
centers and supercomputers S @(3 B 2‘ ;>

set of components
 different CPUs, GPUs, hardware accelerators, memory hierarchies, . _
|/O peripherals, sensors, reconfigurable engines, analog blocks... \ =1

* The set of heterogeneous SoCs in production in any given = n»w‘\;\‘
year will be itself heterogeneous! _* T &g;j;;} 0
* no single SoC architecture will dominate all the markets [/ aﬂ\

* A heterogeneous SoC will combine an increasingly diverse — "—_{jji g
!

TR SR g L] -
s
0 sl tAL

AR EEALE

2 b
©SLD Group — Columbia University NV | s gCT)FI;ElJC!:/Tl?(I)?NIEJWIr\IYIO\QERSITY

Where the Key Challenges in SoC Design Are...

* The biggest challenges are (and wiill mcreasmgly be) found in the
complexity of system integration R ' T A

— How to design, program and validate scalable
systems that combine a very large number of
heterogeneous components to provide a
solution that is specialized for a target class
of applications?

e How to handle this complexity? |

— raise the level of abstraction to System-Level Design
— adopt compositional design methods with the Protocol & Shell Paradigm

— promote Design Reuse

2 b
©SLD Group — Columbia University [e g(T)lEIEIJCJ\I/Tl?(I)?NIE.]\yyl()\QERSITY

What is Needed? To Think at the System Level.

e Move from a processor-centric to an SoC-centric perspective

— The processor core is just one component among many others

e Develop platforms, not just architectures
— A platform combines an architecture and a companion design methodology

e Raise the level of abstraction
— Move from RTL Design to System-Level Design i

e Promote Open-Source Hardware
— Build libraries of reusable components

&2 COLUMBIA UNTVERSITY
IN THE C

ITY OF NEW YORK

P
©SLD Group — Columbia University h=4

Our System-Level Designh Approach to Heterogeneous
Computing: Key Ingredients

Develop Platforms, not just Architectures
* A platform combines an architecture and a companion design methodology

Raise the level of abstraction
 Move from RTL Design to System-Level Design
* Move from Verilog/VHDL to high-level programming languages like SystemC
* Move from ISA and RTL simulators to Virtual Platforms

* Move from Logic Synthesis to High-Level Synthesis (both commercial and in-house tools), which is the
key to enabling rich design-space exploration

Adopt compositional design methods

* Rely on customizable libraries of HW/SW interfaces to simplify the integration of heterogeneous
components

Use formal metrics for design reuse
* Synthesize Pareto frontiers of optimal implementations from high-level specs

Build real prototypes (both chips and FPGA-based full-system designs)
* Prototypes drive research in systems, architectures, software and CAD tools

o
©SLD Group — Columbia University [N £/ COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

Outline

::.!“: ‘ " e «
MM & DL A¢cels
-7 s

1. Motivation

e The Rise of Heterogeneous Computing

2. Proposed Architecture
e Embedded Scalable Platforms (ESP)

3. Methodology and Design Flow

e with a Retrospective on
Latency-Insensitive Design

The Protocol & Shell
Qaradigm

Pa
< HR

2 b
©SLD Group — Columbia University NV | s g%&UMBIA UNIVERSITY

CITY OF NEW YORK

The ESP Scalable Architecture Template

Possible Instance of an ESP Chip

— each hosting at least one configurable processor
core capable of running an OS

— synthesized from high-level specs
e OtherTiles
— memory interfaces, 1/0, etc.
e Network-on-Chip (NoC)
— playing key roles at both design and run time

Template Properties
e Regularity
— tile-based design

— pre-designed on-chip
infrastructure for communication
and resource management

e Flexibility

— each ESP design is the result of a
configurable mix of
programmable tiles and
accelerator tiles

e Specialization

— with automatic high-level
synthesis of accelerators for key
computational kernels

@ COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

Example of a System We Built:
FPGA Prototype to Accelerate Wide-Area Motion Imagery

4, WAMI_APP_GRAYSCALE 5. WAMI_APP_GRADIENT 6. WAMI_APP_WARP 7. WAMI_APP_SUBTRACT - -
i i
el X,
8 WAMI_APP_STEEPEST DESCENT| 9 WA _APP_HESSIAN 10. WAMI_APP_SD_UPDATE 11 WAMI_APP_MULT | jo
V by /
il Fyf
12. WAMI_APP_RESHAPE 13. WAMI_APP_ADD | 14. WAMI_APP_CHANGE_DE[ECT!ON- e

Py

Terminal | Power consumption relative to VF max

SoC Map

Sampling Window

Power per Domain

2 4 % 8

.85 98 11 42

Console Interface

Frame Buffer

NoC Planes Traffic

/ . -
S Motion Detection from

WAMI-Application
©SLD Group — Columbia University

FPGA Infrastructure

Toggle Statistics

13

Design: Complete design of WAMI-App
running on an FPGA implementation of
an ESP architecture

— featuring 1 embedded processor,
12 accelerators, 1 five-plane NoC, and 2
DRAM controllers

— SW application running on top of Linux
while leveraging multi-threading library
to program the accelerators and control
their concurrent, pipelined execution

— Five-plane, 2D-mesh NoC efficiently
supports multiple independent
frequency domains and a variety of
platform services

[P. Mantovani, L. P. Carloni et al., An FPGA-Based

Infrastructure for Fine-Grained DVFS Analysis in
High-Performance Embedded Systems, DAC 2016]

&2 COLUMBIA UNTVERSITY

IN THE CITY OF NEW YORK

ESP Architecture

 RISC-V Processors
* Many-Accelerator

* Distributed Memory
* Multi-Plane NoC

s The ESP architecture implements a
distributed system, which is scalable,
modular and heterogeneous,
giving processors and accelerators

similar weight in the SoC

o /

©SLD Group — Columbia University

PLN

R4

S
.

multi-plane NoC

&2 COLUMBIA UNTVERSITY
N

IN THE CITY OF NEW YORK

ESP Architecture: Processor Tile

NoC
. . . ./rcmerS
.. coherence IO/IRQ
planes plane

* Processor off-the-shelf
o RISC-V Ariane (64 bit)
SPARCVS8 Leon3 (32 bit)
o L1 private cache

* L2 private cache
o Configurable size
o MESI protocol

* |O/IRQ channel

o Un-cached
o Accelerator config. registers,
interrupts, flush, UART, ...

PLN
R4

&2 COLUMBIA UNTVERSITY
IN THE CITY OF NEW YORK

©SLD Group — Columbia University

ESP Architecture: Memory Tile

NoC
* External Memory Channel/
* LLC and directory partition

o Configurable size

o Extended MESI protocol

o Supports coherent-DMA
for accelerators

e DMA channels
* |IO/IRQ channel

coherence IO/IRQ
plqnes plane

NoC

LLC &

directory

coherence DMA 10/IRQ
planes planes plane

PLN
R4

do CoLumBIA UNIVERSITY
IN THE CITY OF NEW YORK

©SLD Group — Columbia University

ESP Architecture: Accelerator Tile

routers
* Accelerator Socket/
w/ Platform Services
o Direct-memory-access ..
o Run-time selection of
coherence model: ..

coherence IO/IRQ
planes plane

NoC

= Fully coherent

» LLC coherent

= Non coherent

LLC &

directory

o User-defined registers

o Distributed interrupt coheremle wﬂ I0/IRQ cohergnce DUA I0/IRQ
planes plane plane planes planes plane

l-n

E]SIP

&2 COLUMBIA UNTVERSITY
IN THE CITY OF NEW YORK

©OSLD Group — Columbia University h=4d

.
Heterogeneous Applications Bring Heterogeneous Requirements

Data Structures of the PERFECT TAV Benchmarks

O minimum addressabie element
O input data (in-place output data)

Debayer

[}
16abit pixel

O ou tput data

Lucas Kanade
——

A7-bit pixe|

N
o [A
> | % %] o &
%h.}l SSian

—N—

I I
|I [II I

- = = 1
P T 32=pit pixel 8-bit pixel

N N N

Cralniig
...... L. X3 5 EaEs
« " -

Interpolation-

interpolation-2 —13

[

Ga-bit
complex

1
numbar N
.||

Backprojection
«—— 8 H—>

AT] 52 4] [e

ata
64-bit complex number

©SLD Group — Columbia University

3 -— complex

G4d=bit float number D:I
=bit flaat n

Structure and Behavior of the Debayer Accelerator

Accelerator Tile

Private Local Memory

reqd

] []
Write
circulzir busfer
ﬁ Output [out
ping-pong buffer

DMAC

debayer()

out[1] = outlz] = outl1]=
Computation dehayer debayer debeyer -
fin[1.5] fin find2,7]]
Lo (1) o Tl

(b}

e While the Debayer structure and behavior is

representative of the other benchmarks, the specifics
of the actual computations, 1/0O patterns, and

scratchpad memories vary greatly among them
Pa

s B !3 @ COLUMBIA UNIVERSITY

‘ IN THE CITY OF NEW YORK

How to Couple Accelerators, Processors and Memories?

Tightly-Coupled Accelerators (TCA)

* Private local memories (aka Accelerator Accelerator
scratchpads) are key to = [Processo @ E @ =
performance and energy efficiency iAi - ¥ AV -
of accelerators ﬁ_% f e

* There are two main models of 2 4vj AV 23
coupling accelerators with < =58 >

proc.essors, memories Loosely-Coupled Accelerators (LCA)
* Tightly-Coupled Accelerators Accelerator

* Loosely-Coupled Accelerators g B | Processor

[E. G. Cota, P. Mantovani, G. Di Guglielmo, and L. P. Carloni, |_:I:J|T-‘1\ D$

An Analysis of Accelerator Coupling in Heterogeneous

Architectures, DAC’15] < - >
l-

&2 COLUMBIA UNTVERSITY
IN THE CITY OF NEW YORK

P
©SLD Group — Columbia University h=4

The Key Role of the Private Local Memories (PLM)

\
. DM‘A\\ e Tailored, many-ported PLMs are key to
e feaL S Banko accelerator performance
X .
g ﬁ’/ﬁ * A scratchpad features aggressive SRAM
CainEe i | [Bankt | [Bank2 banking that provides multi-port
% ’/\ memory accesses to match the
v 4 s arvor multiple parallel blocks of the
- an an .
Computation n — = computation datapath
‘ ‘ \\;__t Banks — Level-1 caches cannot match this
) parallelism
Output DMA //;t Bank6
ertE:/ / [C. Pilato, P. Mantovani, G. Di Guglielmo, and L. P. Carloni, System-Level
+ + Optimization of Accelerator Local Memory for Heterogeneous Systems-

©OSLD Group — Columbia University

on-Chip. IEEE Trans. on CAD of Integrated Circuits and Systems, 2017.]

Pa
< HR
a1

A=a &2 COLUMBIA UNTVERSITY

IN THE CITY OF NEW YORK

Exploiting PLMs to Reduce the Opportunity Cost of
Accelerator Integration

— []
e Two facts: core Fﬁ: core T
1. Accelerators are made mostly of memory -] |HEE DH‘TLW,’: P LOE .
e . . EREENN EEEEEN Memorles_| .
2. Average utilization of accelerator PLMsis =% i .. “I“E
low = e
_ ‘Vlvi
e Main observation: core ﬁ core | \
. TS TRV D,FT'} AItL
— The accelerator PLM provide a de facto €S) | | =S S °pic ?
NUCA substrate

e Implementation:

— Minimal modification to accelerators

e Key ldea:

— Extend the last level cache with the PLMs _ Minimal area overhead
of those accelerators that are not in use — Good Performance: a 6MB ROCA can realize
[E. Cota, P. Mantovani, and L. P. Carloni, Exploiting Private ~70% of the performance/energy efficiency
Local Memories to Reduce the Opportunity Cost of Accelerator benefits of a same-area SMB S-NUCA
Integration, ICS '16] =

2 b
©SLD Group — Columbia University NV | s gCT)FI;ElJC!:/Tl?(I)?NIEJWIr\IYIO\QERSITY

ESP Accelerator Socket

ESP Accelerator Socket

ESP accelerator
HLS [C/C++, SystemC, Tensorflow*, Pytorch*]
RTL [Chisel, Verilog, ...]

read/write config done|

| | |
PLM

{ | |

prlvate
cache

/ A

Y

Y

DMA
TLB ctrl regs IRQ

éééé

S e éé =l

coherence
planes

45 54

coherent-DMA DMA IO/IRQ
planes planes plane

NoC

Third-Party Accelerator Socket*

third-party accelerator

(NVDLA*, ...)
read/write config done
A
ﬁXI4 buslv APB busl > | IRQ
L 1
> 4 10/IRQ
plaal\gés plane NoC

&2 COLUMBIA UNTVERSITY

IN THE CITY OF NEW YORK

ESP Software Socket

* ESP accelerator API

/*
o Generation of device driver

and unit-test application

* Example of existing C application

* with ESP accelerators that replace
* software kernels 2, 3 and 5

*/

{

int *buffer =

o Seamless shared memory

[}
]
)
1
]
I
1
I
)
1
]
]
1
1
1
/
! esp alloc(size);
I -
1
I
1
I

for (...) {
O Appﬁcaﬁon kernel 1 (buffer,...); /* existing software */
| —-—
S;ig) esp_run(cfg k2); /* run accelerator(s) */
. 1 es fg k3);
- E ESP Library | p_runlctg k3)
> X kernel 4 (buffer,...); /* existing software */
\
. \ o
ESP accelerator driver \ } esp_run(cfg_k3);
\
T O \
c O .< \ validate (buffer) ; /* existing checks */
- O \
g & ESP core ESP alloc \\‘ esp _cleanup() ; /* memory free e
x}
Linux ‘
G
Pa
©OSLD Group — Columbia University

&2 COLUMBIA UNTVERSITY

IN THE CITY OF NEW YORK

The Large Data Set Problem for SoC Accelerators

e Finding a high-performance and low-overhead mechanism that allows
hardware accelerators to process large data sets without incurring penalties

for data transfers e Solution :

user virtual physical
. address address ?i‘ff??????, — alow-overhead accelerator virtual address space,
Page Table Yy MA which is distinct from the processor virtual address
CPU i config_urable Accelerator Space;
; Y with PLM .])
; | — direct sharing of physical memory across processors
NI D ccelerator
2 SATEE and accelerators;
‘
f fa N — a dedicated DMA controller with specialized
A contig alloc((DRAM) - Computation translation look aside buffer (TLB) per accelerator;
_/\ _/\ : . . .
Do D = R R — hardware and software support for implementing
;] i o AL run-time policies to balance traffic among available
: , ther
6B : wakes up the DRAM channels.
! ! processor
e '0;;3!0555550 [P. Mantovani, E. Cota, C. Pilato, G. Di Guglielmo and L. P. Carloni,

Handling Large Data Sets for High-Performance Embedded
— Applications in Heterogeneous Systems-on-Chip. CASES 2016]

oo
©SLD Group — Columbia University [L’ COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

ESP Platform Services

Accelerator tile Processor Tile
Reconfi .urable co.herence 1/0 and un-cached memor
Point-to-point R _
ESP or AX| interface Distributed interrupts
DVFS controller DVFS controller
Miscellaneous Tile Memory Tile
Debuq interface Independent DDR Channel
.
LLC Slice
Coherent DMA
Shared peripherals (UART, ETH, ... DMA Handler

{i;? COLUMBIA UNIVERSITY
IN THE CITY OF NEW YORK

©SLD Group — Columbia University

The Twofold Role of the Network-on-Chip

e A scalable NoC is instrumental to accommodate heterogeneous concurrency and
computing locality in ESP
e At Design Time

Final User

Thread|Thread Thﬁad Thread

— simplifies integration of Final User Final User
hEte rogeneous tiles tO Thread|Thread | Thread |Thread RTOS Thread|Thread|Thread | Thread
balance regularity and

specialization
e At RunTime AP
o o . o VCMF
— energy efficient inter-tile
data communication
with integrated support CORE 0

for fine-grain power
management and other
services

I/O Interface NoC * = DATA
e % e m— POWER-CONTROL

[_I_$ _I_ .I_I_ _i_ % _I_ ———m __ T e e e e ———————— J

e The NoC Interface interacts directly with the Tile Socket that supports the ESP Platform Services
— communication/synchronization channels among tiles
— fine-grain power management with dynamic voltage-frequency scaling
— seamless dynamic support for various accelerator coherence models

oo
©SLD Group — Columbia University [L’ COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

Cache Coherence and Loosely-Coupled Accelerators

e An analysis of the literature indicates that there are three main cache-
coherence models for loosely-coupled accelerators:

1. Non-Coherent Accelerator

— the accelerator operates through DMA bypassing the processor caches

2. Fully-Coherent Accelerator

— the accelerator issues main-memory requests that are coherent with the entire cache
hierarchy

e this approach can endow accelerators with a private cache, thus requiring no updates to the
coherence protocol

3. Last Level Cache (LLC)-Coherent Accelerator

— the accelerator issues main-memory requests that are coherent with the LLC, but not
with the private caches of the processors

* in this case, DMA transactions address the shared LLC, rather than off-chip main memory
[

P &2 COLUMBIA UNTVERSITY

IN THE CITY OF NEW YORK

©SLD Group — Columbia University [N

Example: NoC Services to Support Heterogeneous
Cache-Coherence Models for Accelerators

. =
e Seamless dynamic support Pr°¢:§f§,§ processor mem¢. ctrl «—»g
%m\}
for 3 coherence models: EE p— LLC &
cache cache directory
— Fully coherent accelerators 4 $4 A AR
— Non-coherent accelerators Network-on-Chip fwd, o] (e, Fsp)
— Last-Level-Cache (LCC) I v P Pl 3
= private DMA DMA
coherent accelerators 9 P ehe ctrl ctrl
% datapath datapath datapath datapath
S PLM PLM PLM PLM
.]] fully LLC non fully
[D. Giri, P. Mantovani, and L. P. Carloni, Accelerators & coherent coherent coherent coherent
Coherence: An SoC Perspective. IEEE MICRO, 2018.] (cache) (no cache)

oo
©SLD Group — Columbia University [e S,(T)LUMBIA UNIVERSITY

HE CITY OF NEW YORK

Extending ESP to Support Heterogeneous Cache-Coherence
Models for Accelerators

SoC
1 NoC routers DH{QM
mem. ctrl
(DDR)
- -
= |LLC &

'"E"1 directﬂry-—\;/\lg/ gi
(12 3 4 5 6 |
U) See ‘ = __NoC|cgherence MA 1Q/IRQ
: ~—-...L planes planes plane]

Y —

bank |[bank Processor .

accelerator [PLM % bank o bank % |L1 instr]|L1 datal :

| H

read/write port ::nnﬁli port dcre {#n;l_mr ‘Tin-.,ral_ I:E

cache H TLB H %ﬂ‘ﬂ ‘rgi]gs] [IRQ lLE cache].,m
& & N T TR

1 2 3 4 5 6 1 2 3 b
cnl"erence MA I0/IRGQ |NoC ::nhlerence IQ/IRQ
| planes planes plane planes plane _

©OSLD Group — Columbia University

B

e First NoC-based system enabling the

three models of coherence for
accelerators to coexist and operate
simultaneously through run-time
selection in the same SoC

— Design based on ESP Platform Services

Extension of the MESI directory-
based protocol to integrate LLC-
coherent accelerators into an SoC

— The design leverages the tile-based
architecture of ESP over a packet-
switched NoC to guarantee scalability
and modularity

@ COLUMBIA UNIVERSITY
IN THE CITY

OF NEW YORK

Heterogeneous Coherence Implementation

Check and Update SoC Configuration

Accelerator - Accelerator - Accelerator - Accelerator b
sort v || | Cache spmv v | | | Cache fft2d ~ || | Cache fftld v | [| Cache
Accelerator - Memory & Debug~ Processor - Accelerator b
fftld « | [| Cache =~ | Cache ~ |« Cache sort ¥ | | Cache
Accelerator - Processor - Memory - Accelerator b
fftzd v | | | Cache ~ |+ Cache ~ || | Cache spmv ¥ Eq::ache
Accelerator - Accelerator - Accelerator - Accelerator b
spmv ¥ | | Cache sort ¥ | | Cache fftld v |+ Cache fft2d + | | | Cache

[D. Giri, P. Mantovani, L. P. Carloni, Accelerators & Coherence:

An SoC Perspective, |IEEE Micro, Nov/Dec 2018]

©OSLD Group — Columbia University

B

e The CAD Infrastructure of ESP
allows

— direct instantiation of heterogeneous
configurable components from
predesigned libraries

— fully automated flow from the GUI to
the bitstream for FPGAs
e Extension of ESP to support
atomic test-and-set and
compare-and-swap operations
over the NoC allows
— running multi-processor and

multi-accelerator applications
on top of Linux SMP

(ir? COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

Outline

::.!“: ‘ " e «
MM & DL A¢cels
-7 s

1. Motivation

e The Rise of Heterogeneous Computing

2. Proposed Architecture
e Embedded Scalable Platforms (ESP)

3. Methodology and Design Flow

e with a Retrospective on
Latency-Insensitive Design

The Protocol & Shell
Qaradigm

Pa
< HR

2 b
©SLD Group — Columbia University NV | s g%&UMBIA UNIVERSITY

CITY OF NEW YORK

ESP Vision: Domain Experts Can Designh SoCs

(9p]
| -
g
o I \ his 4 ml EE,:IEIBE 4
v O PyTorch
Q —_— PaN
a _gu accelerator
= HLS -
9 : P=N
2 @ Design _5e accelerator
o I I @ ~ Flows = .
= p * O
Q_ O
o I NVDLA.org 2
< : o
EEE P=N >
. > Han _ga accelerator “;;
(O §
o ©
5 .
g c O |crsec y RTL S £
O -5 I‘\ E— Design 8%
©c SystemVerilog Flows S &
z X

&2 COLUMBIA UNTVERSITY
IN THE CITY OF NEW YORK

©SLD Group — Columbia University

ESP Methodology In Practice —putomated
___manval |

Accelerator Flow o 1Lz I SoC Flow

Generate sockets

% i 2755:
Generate accelerator }

gp
58
£k l‘
e
53 _—

Implement for FGPA

Specialize accelerator

* this step is automated
* for ML applications

Test behavior
Generate RTL

Test RTL
Optimize RTL

©SLD Group — Columbia University

=
i acc

!
»

elerator
NVDLA.org
lerator

7]
azd EE

IS

pLIRISC V"

Deploy prototype

PLN
R4

&2 COLUMBIA UNTVERSITY

IN THE CITY OF NEW YORK

ESP Desigh Example: An Accelerator for WAMI

* The PERFECT WAMI-app is an image processing pipeline in behavioral C
code =

* From a sequence of frames it extracts masks of “meaningfully” changed
pixels -,

Wa P (grayscale)

Subtract Warp (dx Warp (dy)

Steep.-Descent

feedback

SD-update Hessian

Matrix-Invert

feedback

Matrix-Mult

feedback

Reshape

* Complex data-dependency among kernels Matrix-Add

Lucas-Kanade

e Computational intensive matrix operations

Change-Detection

feedback

* Global-memory access to compute ratio 45% .
Lines of Code

* Floating-point operation to compute ratio 15% Kernels C__ SystemC RIL
Debayer 195 664 8440
Grayscale 21 368 4079
. . " . ” Warp 88 571 6601
* We designed 12 accelerators starting from a C “programmer-view” reference Gradient 65 540 12163
. . Subtract 36 379 4684
implementation Steep.-Descent 34 410 8744
. . SD-Updat 55 383 7864
« Methodology to port C into synthesizable SystemC e s e 7009
. . . Matrix-Invert 166 388 7392
* Automatic generation of customized RTL memory subsystems for each accelerator Matric-Mult o 207 2708
Reshape 42 269 2160
[P. Mantovani, G. Di Guglielmo, and L. P. Carloni, High-Level Synthesis gﬂhat”x‘Agdt . 122 ggg 1;3&2
of Accelerators in Embedded Scalable Platforms, ASPDAC 2016] — ang.gt; = 964 5863 92603

~ &2 COLUMBIA UNTVERSITY

IN THE CITY OF NEW YORK

©SLD Group — Columbia University

Example of Accelerator Design with HLS: Debayer - 1

- socelerator Tile
1 #include <systemc.h> & woid compute (veid] |
$ SC_MODULE (Debayer) | a in D = 27 lag = troe; Private Local Memory
3 so_in<bool> clk, rst; &1 int r_r = 0; A4 central row of the mask
4 private: £ S resat
5 = Jenalcbaals oowalid, o ready; walt();
f [PR S i R Tl v el -3 while(true] |

"
L
nt BO[AU48]; #h L2: fer (int r=0; r<204E-PRDO; T++) |
& int B1[Z048]; &7 A4 fwaib for wvalid frem input then notify as ready)
a Blic: &8

]

B E_r o= alre_bulfer rowi{r + 2Z2];
1 Fr L3: fer (int j=PAD; (<2048-PRD; J++) |
1l EC_CTOR (debayer) | 0 if (flag) BO[]j] = glAal[r_xl[j-21, AO[r_x][7-11,
iz SC_CTHREAD {input, clk.posi)); 51 BO[r_r]1[3], BO[r_r] [i+1], BO[r_r] [3+2], ...);
I3 resct_signal is{rst, false); 1 else Bl[ji] = gi{ad[r_r][3-2], AD[r_r] [3-11.
14 EC_CTHREAD {oocmpute, clk.pas()); 53 RO[e_el 03], AD[r_x] [34+1], AO(z_c] [d+2], ...);
15 reget_signal dsiraet, false); 54 1
1t 5C_CTHREAD {cutput, clk.po={l}; L A4 fvalid te output, ready to compute)
" reset_signal is{rst, false); 5 flag = [flag;
1] A g7 }
19 1 st i
w | veid lnput (wedid) (| L ;
11 FS reset ... B I"i'ﬂid. cutput (vedd] |
i unsigned circ = 0; ./ circwiar buffer write pointer 61 i Al = 23 lag = Ltruoe;
% wait i) £ £ reset
24 while {true) &3 wallb [}; ik}
15 Lo: fer (imt r=0; r<2048; rii) | B4 while (true] | . . .
4 S DMA reguest L Ld: fer (int r=PAD; r<2048-PAD; r++} | ® The 3 prOCGSSGS execute N p'pellne
] A4 read input ... o A4 (wait for valid from computae then notify as ready)
a8 Ll: For (int c=0; c<2048; c++] BT A4 prepare DMA reguest - ona 2048X2048-pIXE| |mage, Wthh IS
29 1 Abjeice]] = £4...0; } Sfwrite Lo AQ I3 A mand data Stored in DRAM to produce the
31 S ourput L. B L5: fer (int c-PAD; c<204B-PRD; cid) | . ! .
31 i (r >o5) _ if (flag) h(80[c], ...); //read from array B0 corresponding debayered version
i Sf wait for ready from compute then netify as wvalid ™ else hi(Bl[z], ...): didread from array Bl .
; : ! ‘ ! " r ! e The circular buffer allows the reuse
14 Elreed; i A4 fready te compule) P H—
: PR " SO of local data, thus minimizing the

1 cire = 0; 1) data transfers with DRAM

17 ' i3 i
s - e The ping-pong buffer allows the
' overlapping of computation and

PaN communication

!ﬂ &2 COLUMBIA UNTVERSITY
‘ IN THE CITY OF NEW YORK

©SLD Group — Columbia University

High-Level Synthesis Drives Design-Space Exploration

Programmer View

e Given a SystemC specification,

Design Space

HLS tools provide a rich set of
configuration knobs to synthesize

a variety of RTL implementations
— these implementations have

different micro-architectures and
provide different cost-performance
trade-offs

Area [Power

‘e
.
‘e
.

Code Transformation mmm) e Engineers can focus on revising

High-Level Synthesi . ogs .
e = the high-level specification

— to expose more parallelism, remove
false dependencies, increase

©SLD Group — Columbia University

Performance resource sharing...

&2 COLUMBIA UNTVERSITY

" L/
‘ ‘ IN THE CITY OF NEW YORK

Example of Design-Space Exploration:
Accelerator for the SAR Interp-1 Kernel

Main loop in Interpolation-l kernel

function interpl (

{

for (...

{
accum = O /ﬁ\ /ﬁ\

for (.
{

accum += sinc (input):;
}

store (accum) ;

}
}

e Presence of expensive combinational
function (sinc()) in the inner most loop

e Use of “loop knobs” provided by HLS tools to
optimize for power and performance

e Derivation of Pareto set highlighting Power-
Performance trade-offs

©SLD Group — Columbia University

Pareto Set Obtained with
High-Level Synthesis
(1GHz@1V, CMOS 32nm)

100

® Break

80 @ Unroll

@ Pipeline

60

Power (mW)

40 0)

20

0 2 4 6
Execution Time (million-clock-cycles)

@ COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

From SystemC Specification to Alternative RTL
Implementations via High-Level Synthesis

))
\out_data
— Configuration Knobs

(HLS Script)

coeff;

acc
wnile
al
a
a
SC_CTHREAD(beh)
SC_MODULE(mac)

Virtual (or Logical)
Clock

Real (or Physical)
Clock

e’ COLUMBIA UNIVERSITY
IN THE CITY

OF NEW YORK

From SystemC Specification to Alternative RTL
Implementations via High-Level Synthesis

))
\out_data
— Configuration Knobs

(HLS Script)

coeff;

acc
wnile
al
a
a
SC_CTHREAD(beh)
SC_MODULE(mac)

Virtual (or Logical)
Clock

Real (or Physical)
Clock

e’ COLUMBIA UNIVERSITY
IN THE CITY

OF NEW YORK

From SystemC to RTL via HLS: Two Key Questions

D] dat
out_data

5 acc = 0; Configuration Knobs

hile (true) { g

g (HLS Script)

out data = acc +

5 in_data * n_coeff;
SC_CTHREAD(beh) % g

SC_MODULE(mac)

High-Level Synthesis

Virtual (or Logical)
Clock

Real (or Physical)
Clock

))

”_.
o\ :

e In which sense each implementation is correct
with respect to the original specification?

e How to find the best implementation?

[
E (ti? COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

©SLD Group — Columbia University [N

From SystemC to RTL via HLS: Optimality

(=]

acc = 0;

o 1 (e | = Configuration Knobs‘ ® HOW to Compa re
wait () (HLS Script) . .
various synthesized

o0 % [? implementations?
SC_MODULE(mac)

_ _ — in terms of cost

Virtual (or Logical)

Clock - .
[\ Real (or Physical) — in terms of

<z \
performance

e This implementation has e This implementation runs at e Which
lower latency and lower higher (physical) clock implementation is
area but also runs at frequency and offers higher data better?
lower (physical) clock throughput but costs a bit more
frequency area

o2
©SLD Group — Columbia University e/ COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

From SystemC to RTL via HLS Correctness

* _c;oeff;

out_data
) § Configuration Knobs
ait; (HLS Script)

SC CTHREAD(beh)
SC_MODULE(mac)

High-Level Synthesis

Virtual (or Logical)

Clock

Real (or Physical)

Clock

=\

3 2 0 0 3
5 1 6 6 5 1 6
7 2 11 11 . 5 -
9 1 25 25 o . 1
34 34
9
34 34

11

25
34

11
25
34

e Which notion of
equivalence to use?

— between the
synthesized
implementation and
the original
specification

— among many
alternative
implementations?

e How to compare
the 1/0 traces of
the two
implementations?

@ COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

Retrospectlve Latency-Insensitive Design [Carloni et al. "99]

b\passable gueue
C1 o __ [1 Efgﬁ?ﬁ
C3 stopOut;~— stallable core module o
C : I dataout,
— voidOut,
@ == 0 | AN s
stopOut,~— A 0
p |] LJ@;L_C'E’“'
bypass: stopOut | control Tp]n”n
Pl T
Latency-Insensitive Design
Station Station
O e @ @ G | e is the foundation for the flexible synthesizable RTL
representation
ot e anticipates the separation of computation from
communication that is proper of TLM with SystemC
N — through the introduction of the Protocols & Shell paradigm

©SLD Group — Columbia University

~ &2 COLUMBIA UNTVERSITY

IN THE CITY OF NEW YORK

The Arrival of Nanometer Technologies in Mid Nineties
Percentage of Reachable Die

%

100 1~
597 16 clock
60 1 8 clock cycles
40 A 4 clock cycles
20 - 2 clock cycles
0 A 1 clock cycle

250 180 130 100 80 60 nm

e “For a 60-nanometer process a signal can reach only 5% of the die’s length iri a clock cycle” [D. Matzke, ‘97]
e Cause: Combination of higher clock frequencies and slower wires

[]
=
P &2 COLUMBIA UNTVERSITY

IN THE CITY OF NEW YORK

©SLD Group — Columbia University [N

Nanometer Technologies:
Chips Become Distributed Systems

; ""—-—T—‘ __j‘;"
{ ey

% i Il i i E .
= |

o= | * spanafixed numberof gates;
Scale well together with.logic

& = | Global (fixed-length) wires

=l o« _~Span a fixedAfaction of a die,
: do not.scale

e [nterconnect Latency
— hard to estimate because affected by many phenomena
e process variations, cross-talk, power-supply drop variations
— breaks the synchronous assumption

e that lies at the basis of design automation tool flows

/=
Pa
. . . ‘B!E Gi? COLUMBIA UNIVERSITY
©SLD Group — Columbia University h=4 I THE CITY OF NEW YORK

The Traditional Design Flow and the Timing Closure Problem

RTL constraints
w/ statistical |fd
wire load models

logic

re-optimization

(buffering,sizing,
fanout opt.,

critical path opt.

in-place optimization
(buffering, sizing)

©OSLD Group — Columbia University

synthesis

floorplanning /
coarse placement

!

constraints

m[t?

detailed placement /
placement merge

!

constraints
met?

|

routing /
layout merge

!

constraints
met?

\

final layout

e Founded on the synchronous
design methodology

— longest combinational path (critical
path) dictates the maximum operating
frequency

— operating frequency is often a design
constraint

— design exception: a path with delay
larger than clock period

e Many costly iterations
between synthesis and layout
because

— steps are performed independently

— accurate estimations of global wire
latencies are impractical

— statistical delay models badly estimate
post-layout wire load capacitance

&2 COLUMBIA UNTVERSITY
IN THE CITY OF NEW YORK

Wire Buffering and Wire Pipelining

e Wire Delay

— grows quadratically with wire length

e Wire Buffering
— if optimal makes wire delay grow linearly with its length

— reduces the increase of wire delay vs. gate delay ratio in future
process technologies

e from 2000X to 40X for global wires
e from 10X to 3X for local wires

e Wire Pipelining
— is necessary to meet specified
clock period —

—Pppe—Pppet—ppoe— T
—pe Ssima b —ppo—]

Gb COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

©OSLD Group — Columbia University

Stateless Repeaters vs. Stateful Repeaters
e Both buffers and flip-flops are wire repeaters

— regenerate the signals traveling on long wires
e Stateful repeaters |[,]

— storage elements, which carry a state
e flip-flops, latches, registers, relay stations...
e generally, the state must be initialized

e |Inserting stateful repeaters impacts surrounding control logic

— if the interface logic of two communicating modules assumed a certain
latency, then costly rework is necessary to account for additional
pipeline stages

— necessary formal methods to enable automatic insertion

(ti? COLUMBIA UNIVERSITY
IN THE CITY

OF NEW YORK

1/

EIS|P

Correct-by-Construction Design Methodology Enables
Automatic Wire Pipelining

Relay Stations

Relay Stations are sequential elements initialized with void data items SRS,

THE CITY OF NEW Y{

©SLD Group — Columbia

Compositionality &
Theory of Latency-Insensitive Design [Carloni et al. '99]
e For patient processes the notion of latency equivalence is compositional

e Major Theoretical Result

— if all processes in a strict system are replaced by corresponding patient
processes then the resulting system is latency equivalent to the original one

P=aN
1 1IN

©OSLD Group — Columbia University h=4d

&2 COLUMBIA UNTVERSITY
IN THE CITY OF NEW YORK

LID Building Blocks:
Shell (with backpressure)

bypassable queue

s 3
L« dataOut,
dataln, - 4O '
. — voidOut,
voidin, —— L 1ol '
~— stopln,
stopOut, | Sy queue - '
P, by A r stallable core module
g ()
gFull| |gEmpry,
. - — dataOut.
m? deg, bvpass, .)
channel e fire) — voidOut,
control 1 FAY ~— stopln,
'u..-'rfr_rd'; L Y y, pin;
. ready, _
.li channel fire
. control 2
s . - Iﬁl ik
stopOut. eng.|[deq. 1] bypass; ;
L'E?f{fzrﬂ;_ gf'_h'ﬁ, @Empn"‘-\{ | "‘-f TI'.'JE:I‘.'fﬂf'I':_._.__-I.
(] N firing
datalm; | syn_gueue o W control
K T L | Siﬂﬁfﬂf_u_-lu
»1
(fire = Nicr(voiding + empty;) - \/jeo(stopfnj - vordQut;)
Vi€ O voidOut;T = 0 it stopIn; - voidOut; is true
, 7 fire otherwise
Vi € 1 stopQut; full;

Vi el eng;
Vi € T deg;
\ Vi € T bypass;

empty; - fire
empty;

voidIn; - (fire + empty;) - full;

©SLD Group — Columbia University

The theory of LID leaves open the
possibility of developing various
latency-insensitive protocols, each
with a supporting implementation
of the LID building blocks, i.e.
shells and relay stations

This is a possible implementation
of a 2-input 2-output shell for a
latency-insensitive protocol with
one-stop-to-stall backpressure

— the organization is general and can

be easily scaled to an any I/0O
number

— all output signals are clocked at the
output of edge-triggered flip-flops

— the minimum forward latency of

the bypassable queue is zero
@ COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

LID Building Blocks: Relay Station

dataln o W
\V4 mux|__,/main| dataOut
aux | FF
FF
sel mainkEn
pu—
stopOut auxEn control %&topln
\— .
mainkEn
voidIn
“lo . N
. vordOut
mux void
0 FF
: A

/ !stopIn +
rr ! y v

hvoidln & voidQOut)

_

sel =0 ,
mainkn = 1
auxEn =0
stopOut =0

!stopln

sel =1
mainkEn =

auxEn =10

stopOut =

|"

stopln & v orm
N\

pmcessmgl lm*unEn = O

/o

iF— —

sel =

auxkn =
stopOut =

stopln &

lvoidln & !'voidQOut

1
1

S

N

<\

stalling |

N4

sel =0

mainkEn =0
auxEn =1

topOut =0

sel =

'111'1111]311 =0
/ auxEn =0
stopOut = 1

sroggfn

e Arelay station is a clocked (stateful) buffer with
— twofold storage capacity

— simple control flow logic implemented as a 2-state Mealy FSM

e Note that the value of the stopOut bit depends only on the current state of the controller, and
thus no combinational path exists between stop/n and stopOut

@ COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

Benefits of the Protocols & Shells Paradigm

b\passabl e gueue .
| — dataOut,
C R 3212[11111 —-i L ! —-votid()ut,
C R stopOut,-— stallable core module stop
s AW 4. Y | — -
C ... _.ggd(c)):_lltt::
C dal.a[n, i ‘\) ~— stopln,
i = ; A
enq_\l |d0q; Mllempt_v; EVOid]n“” R : \’Oidofl.l'[“n
C bypass; stop*om' control o,
The Protocol & Shells Paradigm
Shell Relay Relay Shell
Station | | Station e preserves modularity of synchronous assumption in
@ Core A A L@ Core p. . . y y p
e 1 [] v Y - distributed environment
ogic Logic
e guarantees scalability of global property by construction
S o I e IR and through synthesis
] e simplifies integrated design & validation by decoupling

stopdout

communication and computation, thus enabling reusability

voidlIn

e adds flexibility up to late stages of the design process

P=
< HR

oo
©SLD Group — Columbia University NV | «ly COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

Example: Combining LID and HLS in the Design
of the Debayer Accelerator

input %] compute

—p

output

BO[2048]

B1[2048]

="

|C. Pilato, P. Mantovani, G. Di Guglielmo, and L. P. Carloni, System-Level Optimization of

Accelerator Local Memory for Heterogeneous Systems-on-Chip, TCAD ’'17]

©OSLD Group — Columbia University

The combination of the ESP interface and
the latency-insensitive protocol enable a
broad HLS-supported design-space
exploration

For example, for the compute process

— Implementation E is obtained by unrolling
loop L3 for 2 iterations, which requires 2
concurrent memory-read operations

— Implementation F is obtained by unrolling L3
for 4 iterations to maximize performance at
the cost of more area, but with only 2
memory-read interfaces; this creates a
bottleneck because the 4 memory operations
cannot be all scheduled in the same clock
cycle

— Implementation G, which Pareto-dominates
implementation F, is obtained by unrolling L3
for 4 iterations and having 4 memory-read
interfaces to allow the 4 memory-read
operations to execute concurrently

(i? COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

ESP Accelerator Flow

Developers focus on the high-level specification, decoupled from

memory access, system communication, hardware/software interface

Programmer View

(2]
@ @ ras Design Space
S \ his 4 ml 9P GG g
e O PyTorch .
J
()
a)
S HLS
= Design 7 , , ‘
%- ‘ G@ ~ Flows EE? accelerator X B R . — £ > RTL
2_ III | v .24 accelerator »f' o H } ___L___.__:t ______ DESign Space
> EEE EL:’E accelerator K
vstenc A=4 A
— ~ _ ‘ Code Transformation ===
S [J] %,
VR Sso 3 . .
= ~ 1 High-Level Synthesis ==)
g e CHISEL RTL . e |3 ™. J y
e I == | -
2 a Design e o
e Systemirilog Flows TSl < 2
L \\, RRETT
>
} Performance
P=N
R EJS|P] &2 COLUMBIA UNIVERSITY
©SLD Group — Columbia University h=4 I THE CITY OF NEW YORK

ESP Interactive SoC Flow

ESP SoC Generator

General SoC configuration: |Data transfers: |Cache Configuration: |CPU Architecture:

virtexup " Bigphysical area | Cache En.: = Core: ariane -« |
ETH FPnew " Scatter/Gather L2 SETS: 512
No JTAG
Eth (192.168.1.2) L2 WAYS: 4 —
Use SGMII :
NoO SVGA LLC SETS: 1024
With synchronizers LLE WAYS: 16—

ACC L2 SETS: 512 —

ACC L2 WAYS: 4

NoC configuration ‘NocC Tile Configuration
Rows: IZ_Cols: ’2_
Config

[Monitor DDR bandwidth
[~ Monitor memory access
[Monitor injection rate
[Monitor router ports

FliHas k2| ClkReg: [0 3} 7 Has BLE 7 0LK 8UF [Has k2 | ClkReg: [0 & FiHasBLL 7 Cix BUF

l ‘ [T Miinitar accierbtor statusg (2.0} LA
[~ Monitor L2 Hit/Miss SElE = o =
“5z accelerator fhe 1 i -
AR=d [Menitor LLC Hit/Miss
[Monitor BVES empty
Num CPUs: 1 7 Has 2 | Clk:Reg: [0 71 Has BLL T 'CEK BUF FiHas L2 [iClkReg|0iTa] 7iHasiPlL! T Cik BUF
Num memory controllers: 1
Num /O tiles: 1

Num accelerators: 0

Num CLK regions: 1

PiRISC-Ve

VF points: |4
EEn :

Num CLKBUF: 0

Generate SoC config

E &2 COLUMBIA UNTVERSITY

IN THE CITY OF NEW YORK

E|
©SLD Group — Columbia University A=

“So, Why Most SoCs are Still Designed Starting from
Manually-Written RTL Code?”

e Difficult to pinpoint a single cause...
— Natural inertia of applying best practices

— Organization of engineering divisions are based on well-established sign-off
points of traditional CAD flows

— Limitations of existing SLD tools (for HLS, verification, virtual platforms..)
— Shortage of engineers trained to work at the SLD level of abstraction

e Arguably, a chicken-and-egg problem

— the lack of bigger investments in developing SLD methodologies and tools is due
to a lack of demand from engineers; conversely, the lack of this demand is due
to the shortcomings of current SLD methodologies and tools

— Academia should take the lead in breaking this vicious cycle

o2
©SLD Group — Columbia University - S?&EC%EIA UNIVERSITY

OF NEW YORK

CSEE-4868: System-on-Chip Platform & CoLumsia UniversiTy

IN THE CITY OF NEW YORK

e Foundation course on the programming, design, and validation of SoCs with
emphasis on high-performance embedded applications

e Offered at Columbia since 2011, moved to upper-level curriculum in Fall 2016
— required course for CE BS program, elective for MS programs in CS and EE

e Course Goals

— mastering the HW and SW aspects of integrating heterogeneous components into a
complete system

— designing new components that are reusable across different systems, product
generations, and implementation platforms

— evaluating designs in a multi-objective optimization space
[L. P. Carloni et al. Teaching Heterogeneous Computing with System-Level Design Methods, WCAE 2019]

oo
©SLD Group — Columbia University [L’ COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

CSEE-4868 — Course Structure

e The course consists of two main tracks that run in parallel throughout
the semester

1. Theory Track:

e Lectures on principles of system-level design, models of computation, latency-
insensitive design, virtual prototyping, design-space exploration, HW/SW co-design,
SoC architectures

— lllustrated with case studies of recent SoCs from industry and academia

2. Practice Track

e Lectures on SystemC and transaction-level modeling, SW application and driver
programming with virtual platforms, and HW accelerator design with HLS tools

— extensive use of commercial tools (e.g. for HLS) and in-house tools (e.g. virtual platform,
memory optimization)

[]
=
P &2 COLUMBIA UNTVERSITY

IN THE CITY OF NEW YORK

©SLD Group — Columbia University [N

Teaching System-on-Chip Platforms at Columbia:
The Fall-2015 Course Project in NUMDErs oo oo ruocne @&

e At Columbia we developed the course
‘CSEE-6868 System-on-Chip Platforms’
based on the ESP Design Methodology

e The Fall-2015 Project by Numbers

— 21 student teams competed in designing a hardware
accelerator for the WAMI Gradient kernel during a
1-month period

— 661: Number of improved designs across all teams
— 31.5: Average number of improved designs per team

— 1.5: Average number of improved designs committed
each day per team 010 -

— 99: Total number of changes of the Pareto curve
over the project period

— 11: Final number of Pareto-optimal designs
— 26X: Performance range of final Pareto curve
— 10X: Area range of final Pareto curve o 2w s s w0 toooc

—
[Area (equivalent LUTS)

[ok
©OSLD Group — Columbia University [N - ECT)IEEC%%?N?\FYKERS[TY

Scaling Up the Design Complexity:

The Fall-2016 Course Proiect

Fa I I_ZO 16 N ew Featu res B CSEE-4868 Fall 2016 - DCT Pareto Curve I CSEE-4868 Fall‘2016 ‘IDCT Pareto Curve
. . ch 26, 2016 Nov 26 2016
Cloud-based project environment | T $] P
— Introduction of IP reuse and
compositional system-level design | o i
%‘ B80000.00 — %‘ v %‘
The Fall-2016 Project by Numbers |: =
I s &
— 15 student teams competed
in designing a system = r— 1
Combining DCT and IDCT 800000.00 2000000 00000.00 -+ 10006000~ 1200000.00
accelerators
. 0o ' ‘ | + Jocooo.co - 00— | \ \ | : :
— 302: Number Of Improved 700000.00 100000 Z‘UOO::)EH(UI“;)SODOD 400000 500000 20000 30000 4600:.'2’(10::';3) 60000 70000 80000 1000000.04
rrlmlodule designs across oo - 70000000 - =1
a teams _ = 600000.00 — - = 800000.00 —
— 20.5: Average number of |2 o000 - i | B z
improved module designs |3 g o000 - o I
g 400000.00 — - L S 600000.00 —
per team ‘% 5 400000.00 — - E
- 121 Average number Of g 300000.00 — - g g
improved module designs . 20000000 -) 10000000 -
per day 200000.00 - - 200000.00 — *
— 20: Total number of days 20000000 -
100000.00 — - 100000.00 — -
when the Pareto curve of
the system changed ooo & ‘ ‘ . ‘ . voo L ‘ ‘ ‘ . . boo L
2e+06 4e+06 B6e+06 Be+06 le+07 2e+06 42 +06 6e+06 8e+06 le+07 o]
— 20: Final number of free (um2) rea (um2)

Pareto-optimal designs
24X: System performance range
4X: System area range

©SLD Group — Columbia University

“

oA me—)

CSEE-4868 Fall 2016 - System Pareto Curve

350000.00

NOV 26, 2016
Fareto point [3
300000.00 -
250000.00
200000.00 —
150000.00
100000.00 -
5000000 L ! ' ! 4
Q 100000 200000 300000 400000 500000
Area (um2)
*
] I I I |
2e+06 4e+06 Ge+06 Be+06 le+07
Area (um2)
tiie wiis ur vy 1ORK

Keep Scaling Up the Design Complexity:
The Fall-2017 Course Project

oy ° Syst DSE C t DSE
e Competitive and ystem ampanen
o -
collaborative system- 5 Z .
level design-space
ACCUracy -
exploration of a CNN E . L
| t Throughput A Latency
dacceilerator ;
L VGG-16 S}I’StEITI J:' Convolutional layers
— partitions of the set of _ Fully Connected layers
student teams com pete Stage 1 Stage 2 Stage 3 Stage 4 Stage S Stage 6
the reusable design CC C) WC) N e N
on
ofangiven CNNstage \|\2go|25 oo | 250 25| || 352|252l 25 =o| |222| S22 S5 22| 352|582 322
— allteams combine their | ||E53||2288|||E53|(2222 | (253 ||253| 2253 || 253|553 (2523 | |253| 553 | 252
tage design with th G530 [](82F) 37 [[3<° (=7 27F | =5 325|870 | |22 | 8=° |
stage design wi e
deSignS they Hlicense” . AN ALAS AN IS FA N AS A AN ALY | L AN R IAVAAY
for the other stage to 1 2 3 4 5 6 7 8 9 10 11 12 13 141516
) o8 < < o < <
compete for the design z z % = z z
of the overall CNN ¥
l MAIN MEMORY
E (i? COLUMBIA UNIVERSITY

©OSLD Group — Columbia University s IN THE CITY OF NEW YORK

NVIDIA MatchlLib

O Why GitHub? Enterprise Explore Marketplace Pricing Sign in ‘ Sign up ‘ Connections Guide

Latency Insensitive Channel Library

LI NVlabs / matchlib @Watch 14 %star 4 YFork 0

MATCHLIB, NVIDIA

<3 Code Issues 0 Pull requests 0 Projects 0 Insights . o i i i . . i X
MatchLib communications methodology is based on high-level synthesis (HLS) on the Iatmg—lnsenstwedesgn SLID; Eaadlgm.
Systems are fully designed in synthesizable SystemC and C++, and components are connected through synthesizable SystemC
|atency-insensitive (LI) channels. The approach is based on alibrary and AP of |atency-insensitive channels called Connections, which

MatchlLib isthe subject of this guide.

1 INTRODUCTION
MatchLib’s Connections is a library and API of latency-insensitive channels. It was presented for the first time at

MatchLib is a SystemC/C++ lib f ly-used hard functi d ts that b thesized b t
alent .IS a°ys .em /Creli rarY o commonly-used hardware functions and components that can be synthesized by mos DAC 2018 as part of a new modular digital VLSI methodology [Khailany et al. 2018]. To know the motivation behind
commercially-available HLS tools into RTL.

Connections refer to section 2.3 of [Khailany et al. 2018].

Doxygen-generated documentation can be found here. Additional documentation on the Cennections Jatencyiinsensitive, All components of this library are HLS-able and they are designed to be synthesized with Mentor Catapult. Table 1
channelimplementation can be found in the Connections Guide. shows an overview of the most relevant components and API in Connections.
Getti ng Sta rted Table 1. API of Connections reflecting unified terminals (ports) and types of channels
Port Functions
. In<T> Pop(), PopNB()
Tool versions
Out<T> Push(), PushNB()
MatchLib is regressed against the following tool/dependency verions: InBuffered<T> Pop0. PopNBQ: Empty(), Peck(
OutBuffered<T> Push(), PushNB(), Full()
e gcec -493
¢ systemc -2.3.1
Channel Description
* boost -1.55.0
Combinational< T> Combinationally connects ports
¢ doxygen - 1.8.11 - N N
Bypass<T> Enables DEQ) when emy
e INVITED: A Modular Digital VLSI Flow for High-Productivity it o ENS oy
! Pipeline Enables ENQ when
* catapult - 103 SOC DeSign Buffer<T> FIFO channel
* ves -2017.03-SP2-11 OutNetwork<T=>, InNetwork<T> Network channels: packetizer and de-packetizer

Brucek KhailanyT, Evgeni Krimer", Rangharajan Venkatesan', Jason Clemons, Joel S. Emer’®,
Matthew Fojtik’, Alicia Klinefelter!, Michael Pellauer!, Nathaniel Pinckney®, Yakun Sophia Shao",
Shreesha Srinath*, Christopher Torng *, Sam (Likun) Xi*, Yanging Zhang', Brian Zimmer"

* verdi -2017.12-5P2-2
2 PORTS

A module’s latency-insensitive (LI) interface is composed of ports, with which it connects to other modules through

1— i . . ® - - O -
NVIDIA, *Cornell University, Harvard University, Massachusetts Institute of TeChHOIOgy channels. The port is the element through which a module enforces the LI protocol. The communication invariant
' /=
]
&2 COLUMBIA UNIVERSITY

©OSLD Group — Columbia University s ' IN THE CITY OF NEW YORK

In Summary

e Computer architectures are increasingly heterogeneous
e Heterogeneity raises design complexity
e Coping with complexity requires
1. raising the level of abstraction in hardware design and
2. embracing design for reusability
e High-level synthesis is a key technology to meet both requirements

e Flexible interfaces based on LID Protocols & Shells Paradigm are
critical for composing circuits synthesized with HLS

e ESP is an open-source platform for heterogeneous SoC design that
we developed based on these principles and practices

=3
P=
[P %
©SLD Group — Columbia University NV | s E]CT)IE:{;’:ATEL?NISVIV\IYIO\;ERSITY

ESP for Open-Source Hardware

e We contribute ESP to the OSH community

in order to support the realization of

— more scalable architectures for SoCs
that integrate

— more heterogeneous components,
thanks to a

— more flexible design methodology,
which accommodates different
specification languages and design flows

e ESP was conceived as a heterogeneous
integration platform from the start and
tested through years of teaching at
Columbia University

e We invite you to use ESP for your
projects and to contribute to ESP!

©SLD Group — Columbia University

https://www.esp.cs.columbia.edu

=g
l:;;' Home Resources v News Team Contact

ESP

the open-source SoC platform

O v o O Latest Posts

Embedded Systems:

: The Invisible Computing

s = ¥

wl '§7 ¢

\ of 4 ¥
P e e e T

The ESP Vision

ESP is an open-source research platform for heterogeneous system-on-chip design that combines a flexible
tile-based architecture and a modular system-level design methodology.

([]
W}hl s 4 ml b C5E

Upcoming talk at
VLSID & ES 2020

Application Developers

HLS - < in Bangalore
@ Design { accelerator l saa g
C We will give a talk about ESP
III R in Bangalore (India) on

é January 5th at the

H International Conference on
VLSI Design and

:: International Conference on
g2 Embedded Design (VLSID &

H ES).

Published: Jan 2, 2020

\ NVDLAorg)

Hardware
Designers

[Z2©

ESP provides three accelerator flows: RTL, high-level synthesis (HLS), machine learning framneworks. All three
design flows converge to the ESP automated SoC integration flow that generates the necessary hardware and
software interfaces to rapidly enable full-system prototyping on FPGA.

s E (iﬁ COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

SOme Recent PUincationS Available at www.cs.columbia.edu/~luca

1. L. P. Carloni. From Latency-Insensitive Design to Communication-Based System-Level Design The Proceedings
of the IEEE, Vol. 103, No. 11, November 2015.

2. L. P. Carloni. The Case for Embedded Scalable Platforms DAC 2016. (Invited Paper).
3. L. P. Carloni et al. Teaching Heterogeneous Computing with System-Level Design Methods, WCAE 2019.

4. E.G. Cota, P. Mantovani, G. Di Guglielmo, and L. P. Carloni. An Analysis of Accelerator Coupling in
Heterogeneous Architectures. DAC 2015.

5. P. Mantovani, E. Cota, K. Tien, C. Pilato, G. Di Guglielmo, K. Shepard and L. P. Carloni. An FPGA-Based
Infrastructure for Fine-Grained DVFS Analysis in High-Performance Embedded Systems. DAC 2016.

6. P. Mantovani, E. Cota, C. Pilato, G. Di Guglielmo and L. P. Carloni. Handling Large Data Sets for High-
Performance Embedded Applications in Heterogeneous Systems-on-Chip. CASES 2016.

7. P. Mantovani, G. Di Guglielmo and L. P. Carloni. High-Level Synthesis of Accelerators in Embedded Scalable
Platforms. ASPDAC 2016.

8. L. Piccolboni, P. Mantovani, G. Di Guglielmo, and L. P. Carloni. COSMOS: Coordination of High-Level Synthesis
and Memory Optimization for Hardware Accelerators. ACM Transactions on Embedded Computing Systems,
2017.

9. C. Pilato, P. Mantovani, G. Di Guglielmo, and L. P. Carloni. System-Level Optimization of Accelerator Local
Memory for Heterogeneous Systems-on-Chip. IEEE Trans. on CAD of Integrated Circuits and Systems, 2017.

10.D. Giri, P. Mantovani, and L. P. Carloni. Accelerators & Coherence: An SoC Perspective. IEEE MICRO, 2018.

@ COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

©SLD Group — Columbia University

PaN
E|SIP
h=d

Thank you from the ESP team!

https://esp.cs.columbia.edu

https://github.com/sld-columbia/esp

dh
i System Level Design Group

CSe

eC U COMPUTER SCIENCE

P=aN

1 N

AR=d
[~

‘\;i? COLUMBIA UNIVERSITY
IN THE CITY OF NEW YORK

https://esp.cs.columbia.edu/
https://github.com/sld-columbia/esp

